Аналитическая химия II Инструментальные методы анализа Майстренко В. Классификация методов аналитической химии Аналит химия инструментальные методы анализа

Инструментальные методы анализа получили название благодаря применению соответствующих инструментов. По определению IUPAC (Международного Союза чистой и прикладной химии), инструментом называют устройство, которое используют для наблюдения определенного объекта, измерения или для сообщения данных о состоянии вещества. Устройство заменяет действия человека, дополняет или увеличивает его возможности.

В инструментальных методах анализа как инструменты применяют разного типа приборы, предназначенные для проведения основных процедур анализа, измерения физических и физико-химических свойств веществ, а также для регистрации результатов измерения. За счет современных компьютеризированных приборов чувствительность анализа может быть существенным образом повышена. Многие физико-химические свойства специфичны.

Все инструментальные (физические и физико-химические) методы основаны на измерении соответствующих физических величин, которые характеризуют определяемое вещество в анализируемом объекте.

Для каждого инструментального метода используют соответствующий аналитический сигнал. В таблице 1 приведенные примеры аналитических сигналов и соответствующих им методов, которые относятся к двум важнейшим группам - к электрохимическим методам анализа и оптическим методам анализа. К этим же группам относят и некоторые другие методы, не показанные в таблице. Например, к числу оптических методов относят люминесцентный, атомно-абсорбционные и другие спектроскопические методы, нефелометрию, турбидиметрию и поляриметрию.

Кроме электрохимических и оптических методов известны и другие группы методов. Так, например, методы, в которых измеряют радиоактивность, относят к ядерно-физическим методам. Используют также масс-спектрометрические методы, термические методы и др. Эта классификация условна и не является единственно возможной.

Зависимость аналитического сигнала от содержания определяемого вещества Х называют градуировочной функцией. Ее записывают как уравнение вида I = f (C) . В этом уравнении символом C обозначают содержание определяемого вещества Х , которое может быть выражено в разных единицах, например единицах количества вещества (моль), единицах массы (г, кг), единицах молярной концентрации (моль/дм 3). Эти единицы прямо пропорциональны между собой. Величину аналитического сигнала в общем случае обозначают символом I , хотя в отдельных методах используют специфические обозначения (см. табл. 1). В каждом методе градуировочные функции однотипные, но точный вид градуировочной функции для конкретной методики зависит от природы определяемого вещества Х и условий измерения сигнала. Так, во всех вариантах рефрактометрического анализа аналитическим сигналом является показатель преломления светового луча (n), который линейно зависит от содержания вещества Х в исследуемом растворе (I = n = a + k С). Это означает, что при рефрактометрическом определении любого вещества градуировочный график прямолинейный, но не проходит через начало координат (рис. 1). Численные же значения констант а и k зависят от того, какой компонент определяют и в каких условиях (растворитель, температура, длина волны) измеряют показатель преломления.

Таблица 1. Примеры инструментальных методов анализа

Электрохимические методы

Аналитический сигнал

Вид градуировочной функции

Первичный, I

Вторичный, I*

Кондуктометрия

Электрическое сопротивление, R

Электрическая проводимость, L

L = a + k

Потенциометрия

Э.Д.С. электрохимической каморки, Е

Потенциал электрода, Е

Е = a + lg b

Вольтамперометрия

Сила тока, i

Предельный диффузный ток, i d

i d = k

Кулонометрия

Количество электричества, Q

Электрогравиметрия

Масса продукта электролиза, m

Оптические методы

Аналитический сигнал

Вид градуировочной функции

Первичный, I

Вторичный, I*

Атомно-эмиссионный спектральный анализ

Фототок, i ;

относительное почернение, S

i = a C b

S = a + k lgC

Спектрофотометрия

Оптическая плотность, D

D = l C

Рефрактометрия

Показатель преломления, n

n = n - n o

n = n 0 + kC

Во многих методах зависимость сигнала от концентрации описывается нелинейными функциями, например, в люминесцентном анализе это показательная функция (I = kC n) , в потенциометрии - логарифмическая функция (Е = Е 0 + k lgС) і т.д. Несмотря на указанные отличия, все градуировочные функции похожи тем, что по мере возрастания величины C (содержание определяемого вещества Х ) величина сигнала изменяется беспрерывно, а каждому значению С отвечает только одно значение I .

Градуировочные функции устанавливают экспериментальным путём, используя стандартные образцы сравнения (эталоны), которые содержат различное точно известное количества определяемого вещества Х. Данные, полученные в результате измерения сигнала для каждого эталона, разрешают представить градуировочную функцию в виде таблицы, графика или алгебраической формулы. Если теперь измерять тем же прибором аналитический сигнал исследуемой пробы при тех же условиях, что и сигнал эталона, то по величине такого сигнала можно будет определить содержание Х в исследуемой пробе с помощью градуировочной функции.

Легко рассчитать результат анализа, если сигнал I прямо пропорционален содержанию определяемого вещества Х. Если же такой пропорциональной зависимости не существует, то непосредственно измеренный (первичный) аналитический сигнал I превращают во вторичный аналитический сигнал I *. Выбирают такой способ преобразования, чтобы вторичный аналитический сигнал I * был прямо пропорционален количеству определяемого вещества Х. Так, например, электрическое сопротивление раствора (R ) определённым образом зависит от концентрации растворённого электролита (С). Сопротивление анализируемого раствора легко измерить, но применять R как аналитический сигнал неудобно потому, что при возрастании С величина R уменьшается, причем нелинейно. Поэтому в кондуктометрическом анализе вторичным сигналом является электропроводность раствора L , которая связана с сопротивлением R следующей формулой:

Электропроводность раствора L пропорционально возрастает по мере роста концентрации растворённого сильного электролита. Кроме того, из всех значений L , полученных для однотипных растворов с разной концентрацией Х , можно отнять одну и ту же величину L 0 - электропроводность раствора, который не содержит Х. «Исправленная» величина электропроводности L * = L - L 0 не просто линейно зависит от концентрации Х , а прямо пропорциональная концентрации электролита в растворе, то есть L * = k C.


Рис. 1.1. Типичные градуировочные графики для некоторых инструментальных методов: 1 - рефрактометрия; 2 - люминесцентный анализ; 3 - потенциометрия

Такой приём называется вычитанием фона. В инструментальных методах его используют очень часто. Многие приборы перед началом измерения настраивают так, чтобы они сразу же показывали исправленный сигнал, прямо пропорциональный С. Шкалу такого прибора можно проградуировать прямо в единицах концентрации. Иногда для обеспечения линейности градуировочных графиков превращают не ординату, а абсциссу. Например, в потенциометрическом анализе откладывают по горизонтальной оси не содержимое Х , а его логарифм. А в некоторых вариантах спектрального анализа проводят двойное преобразование - логарифмируют и сигнал, и концентрацию, а потом строят прямолинейную графическую зависимость lgI от lgС .

При контроле загрязнения окружающей среды аналитические методы должны позволять проводить определение как следовых количеств элементов (на уровне n·10 -3 -n·10 -7 %), так и при высоких уровнях загрязнения, причем желательно одновременно, в разнообразных объектах, отличающихся физическими свойствами и химическим составом.

Когда какой-либо метод анализа сравнивается с другими, необходимо принимать во внимание ряд факторов, в совокупности характеризующих метод. К ним относятся:

    область применения - объекты анализа и номенклатура веществ (неорганических и органических), определение которых возможно с использованием данного метода;

    рабочий диапазон определяемых концентраций – интервал, в котором возможно определение компонента без применения дополнительных стадий разбавления или концентрирования;

    селективность определения – возможность определения интересующего вещества в присутствии или при влиянии мешающих компонентов и факторов, например матричные эффекты;

    метрологические характеристики (чувствительность определения, пределы обнаружения, воспроизводимость и правильность получаемых результатов измерений и т.п.);

    способность к распознаванию различных физико-химических форм контролируемых веществ в различных матрицах, например, ионы в разном валентном состоянии;

    производительность оборудования , пригодность для выполнения массовых измерений;

    аппаратурное оснащение - сложность аппаратурного оснащения и его стоимость, возможность применения в производственных и полевых условиях;

    требования к подготовке и квалификации персонала (лаборант, инженер, необходимость специальной подготовки).

Методы, которые одинаково удовлетворяли бы всем вышеперечисленным требованиям, пока не разработаны, однако основные условия могут быть соблюдены при использовании современных физико-химических методов анализа и их комбинаций.

    1. Характеристики наиболее распространенных инструментальных методов анализа

Электроаналитические (электрохимические) методы. В их основе лежат электрохимические процессы в растворах. Эти методы давно известны и часто находят применение при повседневном контроле объектов окружающей среды, имеют преимущества с точки зрения низкой стоимости аппаратурного оснащения и необходимых расходов на эксплуатацию приборов. Преимущества электрохимических методов анализа:

Высокая чувствительность и селективность, быстрота отклика на изменение состава анализируемого объекта;

Большая номенклатура определяемых химических элементов и веществ;

Широкие интервалы измеряемых концентраций - от десятков % до n*10 -8 %;

Правильность и высокая воспроизводимость результатов (относительное стандартное отклонение результатов анализа в большинстве ЭМА менее 0.3);

Возможность определения наряду с валовым содержанием и физико-химических форм определяемых элементов;

Простота аппаратурного оформления, доступность аппаратуры и малая стоимость анализа;

Возможность использования в лабораторных, производственных и полевых условиях, легкость автоматизации и дистанционного управления.

Представляют область аналитической химии, весьма перспективную для усовершенствования аппаратурного оформления и автоматизации с помощью микропроцессоров.

Таблица 1 Классификация инструментальных методов анализа

Название метода и его варианты

Определяемые компоненты

Предел обнаружения, мг/л (мг/кг)

Диапазон линейности

Электроаналитические методы

Вольтамперометрия (полярография)

ионы металлов и их связанные формы, газы

специф. но ср. чувств.

Потенциометрия

неорганические ионы

Ионометрия с ионоселективными электродами

неорганические ионы

Кулоно- и кондуктометрия

неорганич. соединения, газы

Спектральные методы анализа

Молекулярная спектрометрия

Спектрофотометрия в видимой области

неорганические и органические соединения

просты и шир.прим.

УФ-спектрофотометрия

неорг. и органические в-ва

ИК-спектрометрия

КР-спетрометрия

идентификация орг. веществ

высокоспец

Атомная спектрометрия

Атомно-абсорбционная спектрометрия

химические элементы, главным образом металлы

Атомно-эмиссионная спектрометрия

более 70 химических элементов

Атомная флуоресцентная спектрометрия

органические вещества и металлоорганические комплексы

Радиоспектроскопические методы

Электронный парамагнитный резонанс (ЭПР)

Макрокомпоненты, свободные радикалы.

высокоспецифичны,

Ядерный магнитный резонанс (ЯМР)

органические соединения, содержащие ядра Н, С, F, P

малочувствительны.

Масс-спектрометрические

Масс-спектрометрия

Следы элементов

Хроматографические методы

Газовая хроматография

газы, летучие органические соединения

Зависит от типа

высокоспецифичны,.

Газожидкостная хроматограф.

органические соединения

детектора

Высокоэффективная жидкостная хроматография

нелетучие органические соединения

применяются.

Ядерно-физические методы

Нейтронно-активационный анализ

химические элементы, за исключением легких

требуют спец.

-, - и - радиометрия

радионуклиды

-, - и - спектрометрия

* - сильно зависит от определяемого элемента; ** - зависит от используемого детектора

Недостатки - эффект взаимного влияния элементов, невозможность многоэлементного определения, влияние органических веществ.

Спектральные методы анализа основаны на использовании взаимодействия атомов или молекул определяемых веществ с электромагнитным излучением широкого диапазона энергий. В порядке уменьшения энергии, это могут быть: гамма кванты, рентгеновское излучение, ультрафиолетовое и видимое, инфракрасное, микроволновое и радиоволновое излучение.

Взаимодействие молекул или атомов вещества с различными формами энергии находит проявление в трех тесно связанных друг с другом спектроскопических явлениях - эмиссии, адсорбции и флуоресценции, которые, так или иначе, используются в аналитической технике. Аналитическим сигналом может быть испускание или поглощение излучения веществом, поэтому различают два вида спектрального анализа: абсорбционную спектроскопию (использует спектры поглощения) и эмиссионную спектроскопию (спектры испускания).

Спектральные методы анализа начали развиваться еще с середины XIX века и к настоящему времени приобрели всеобщее распространение в качественном и количественном анализе. Широкое применение спектральных методов анализа обусловлено их универсальностью, избирательностью, низкими пределами обнаружения, экспрессностью, возможностью автоматизации, как отдельных стадий, так и всего процесса анализа в целом. Современные спектральные приборы имеют автоматизированные системы ввода проб, встроенные микропроцессоры, которые управляют процессом проведения анализа, обрабатывают данные эксперимента и выдают их в удобной для потребителя форме.

К группе спектральных методов анализа относятся:

    молекулярно-абсорбционный спектральный анализ в видимой, УФ- и ИК- области;

    метод анализа по спектрам комбинационного рассеивания света;

    люминесцентный или флуоресцентный анализы;

    атомно-эмиссионный, атомно-абсорбционный и атомно-флуоресцентный анализы;

    радиоспектроскопические методы анализа (ЭПР- спектроскопия, ЯМР- спектроскопия).

Молекулярная спектрометрия . В зависимости от используемого энергетического диапазона оптические методы анализа делятся на спектроскопию в видимой и ультрафиолетовой областях спектра (диапазон длин волн от 200 до 700 нм, 1 нм = 10 -9 м) и инфракрасную спектрометрию (от длин волн, при которых свет становится невидимым для глаз человека ~ 780 нм до области, где излучение уже обладает свойствами высокочастотных радиоволн ~ 0.5 мм). Классические фотометрия и спектрофотометрия все еще находят широкое применение (микропроцессорное управление, позволяющее полностью автоматизировать процесс измерения). Инфракрасная спектрометрия особенно полезна для идентификации и установления структуры органических соединений. КР-спетрометрия.

Атомная спектрометрия . В последние 20-30 лет выросла роль атомно-абсорбционной и атомно-эмиссионной спектрометрии. Методы требуют более сложной и дорогой аппаратуры, но позволяют выполнять массовые анализы и определять большинство химических элементов в матрицах самого разнообразного состава с крайне низкими пределами обнаружения (при абсолютном содержании ~ 10 -14 г). Эти инструментальные методы анализа становятся обычными (рутинными) даже в небольших лабораториях контроля окружающей среды, особенно при контроле загрязнения атмосферы и природных вод, когда простейшая предварительная пробоподготовка или концентрирование (экстракция, упаривание проб воды или улавливание атмосферных загрязнений на фильтре) способствуют повышению чувствительности определений.

Атомно-флуоресцентная спектрометрия также позволяет определять различные элементы, но на основе переизлучения световой энергии, поглощенной свободными атомами.

ЭПР-спектрометрия . Методом ЭПР исследуются молекулы, атомы и радикалы в газовой среде, растворах и различных типах матриц. ЭПР - один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод применяется для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов.

Спектроскопия ядерного магнитного резонанса - метод измерения относительной энергии и состояния ядерных спинов молекулы в магнитном поле. Метод пригоден для изучения атомов, обладающих ядерным спином, и может применяться для количественного и качественного анализа, особенно при анализе соединений с неизвестной структурой. Чаще всего используется применительно к ядрам 1 H, 19 F и 31 P.

Масс-спектрометрия . Этим методом анализируют вещество, преобразуя его в ионы и разделяя их затем в электрическом или магнитном поле.

Методы молекулярной спектрометрии (ИК-, УФ-, ЯМР-, ЭПР- и масс - спектрометрия) больше связаны с установлением структуры и исследованием механизма протекающих процессов, чем с простой идентификацией состава.

Хроматографические методы. По существу, хроматография является методом разделения смесей. После разделения смеси на компоненты осуществляется их идентификация и количественное определение. Для этого используются специальные устройства, называемые детектором и основанные на разных принципах измерения количества или концентрации вещества - от простейших термоэлементов или фотометров до масс-спектрометров высокого разрешения в комплексе с микропроцессором. Инструментальная хроматография является гибридным методом: хроматографическая колонка разделяет компоненты пробы на отдельные зоны, а детектор обычно измеряет концентрацию разделенных компонентов в фазе-носителе после их выхода из колонки.

Хроматографические методы, особенно газожидкостная и высокоэффективная жидкостная хроматография, часто оказываются незаменимыми при анализе сложных многокомпонентных смесей, а также для идентификации и количественного определения органических веществ со сходной структурой. Особенно быстро развиваются методы, сочетающие хроматографическое разделение смеси анализируемых веществ на компоненты и последующее их определение с помощью масс- или ИК-спектрометрии (хромато-масс- спектрометрия ГЖХ-МС, газожидкостная хроматография - фурье-спектроскопия в инфракрасной области ГЖХ-ИК-ФС)

Ядерно-физические методы занимают особое положение и применяются более ограниченно, так как требуют специально подготовленных лабораторий, соблюдения множества требований радиационной безопасности и пригодны лишь для определения радиоактивных изотопов химических элементов, обладающих специфическими ядерно-физическими характеристиками - явлением радиоактивного распада.

Ни один из перечисленных методов анализа не является универсальным с точки зрения пригодности для определения содержания всех интересующих компонентов и в любых объектах контроля.

При выборе конкретного метода анализа рассмотрению в первую очередь подлежат следующие вопросы:

    групповые характеристики и особенности физико-химических свойств загрязнителя, подлежащего контролю;

    Химический состав и физические свойства контролируемых объектов;

    Возможный диапазон изменения концентраций определяемого вещества в объектах контроля;

    Метрологические характеристики метода: чувствительность (предел обнаружения), точность и правильность (селективность, воспроизводимость результатов определений, отсутствие помех определению со стороны сопутствующих компонентов т.п.);

    Требования, предъявляемые к способу подготовки пробы вещества перед измерением;

    Время, затрачиваемое на единичное измерение;

    Общая продолжительность анализа с учетом пробоподготовки, измерения и выдачи результатов;

    Возможность автоматизации процесса пробоподготовки, измерения и выдачи результатов анализа.

Последние четыре пункта особенно важны при выборе метода, пригодного для выполнения массовых анализов.

n Совокупность традиционных методов определения состава вещества путём его последовательного химического разложения получила название «мокрой химии» («мокрый анализ»). Эти методы обладают относительно низкой точностью, требуют относительно невысокой квалификации аналитиков и ныне почти полностью вытеснены современными инструментальными методами определения состава вещества.

n Однако у «мокрой химии» есть своё преимущество перед инструментальными методами - она позволяет путем проведения стандартизованных процедур (систематический анализ) напрямую определять состав и разные окислительные состояния элементов.

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы. Они основаны на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации).

Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические.

Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов находится обычно в пределах 0, 005- 0, 1%; ошибки определения инструментальными методами составляют 5- 10%, а иногда и значительно больше.

При использовании физических и физикохимических методов требуются, как правило, микроколичества веществ. Анализ может быть в ряде случаев выполнен без разрушения пробы; иногда возможна также непрерывная и автоматическая регистрация результатов. Эти методы используются для анализа веществ высокой чистоты, оценки выходов продукции, изучения свойств и строения веществ.

n ПОТЕНЦИОМЕТРИЯ (от лат. potentia-сила, мощность и греч. metreo- измеряю), электрохимический метод исследования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от термодинамической активности (концентрации) компонентов электрохимической реакции.

где Е 0 стандартный потенциал, R-газовая постоянная, Т-температура, F-постоянная Фарадея, n-число электронов, участвующих в реакции, a, b, . . . , т, р. . . -стехиометрические коэффициенты при компонентах реакции А, В, . . . , М, Р (которыми могут быть ионы и молекулы в жидкой, твердой или газовой фазе). n Активности твердых и газообразных компонентов и р-рителей принимают за единицу. n n n

n При потенциометрических измерениях составляют гальванический элемент с индикаторным электродом, потенциал которого зависит от активности хотя бы одного из компонентов электрохимической реакции, и электродом сравнения и измеряют электродвижущую силу (ЭДС) этого элемента.

n Среди этих методов различают прямую потенциометрия и потенциометрическое титрование. Прямая потенциометрия применяется для непосредственного определения активности ионов (напр. , Ag+ в р-ре Ag. NO 3) по значению Е соответствующего индикаторного электрода (напр. , серебряного); при этом электродный процесс должен быть обратимым.

n Исторически первыми методами прямой потенциометрии были способы определения водородного показателя р. Н. Появление мембранных ионоселективных электродов привело к возникновению ионометрии (р. Хметрии), где р. Х = - lg ах, ах-активность компонента X электрохимической реакции.

n Иногда р. Н-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям р. Х затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионоселективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных растворах ограничено из-за неустойчивости их корпуса и мембраны к действию органических растворителей.

n Метод градуировочного графика. Для этого заранее строят градуировочный график в координатах ЭДС - lg. СИ с использованием стандартных растворов анализируемого иона, имеющих одинаковую ионную силу paствора. n График - линейный. Затем по ионной силе измеряют ЭДС цепи с анализируемым раствором и по графику определяют концентрацию раствора. Пример определения приведен на рис.

Метод добавок. n Это группа методов, основанная на введении в анализируемый раствор добавки раствора анализируемого иона с известной концентрацией. Добавка может быть одноразовой - метод единичной добавки; двухразовой - метод двойной добавки; многоразовой - метод многократных добавок.

n К прямой потенциометрии относится также редоксметрия - измерение стандартных и реальных окислит. -восстановит. потенциалов и констант равновесия окислит. -восстановит. реакций. Окислит. -восстановит. потенциал зависит от активностей окисленной и восстановленной форм вещества. Редоксметрию применяют также для определения концентрации ионов в растворах. Методом прямой потенциометрии с использованием металлич. электродов изучают механизм и кинетику реакций осаждения и комплексообразования.

n Прямая потенциометрия обладает важными достоинствами. В процессе измерений состав анализируемого раствора не меняется. При этом, как правило, не требуется предварительного отделения определяемого вещества. Метод можно легко автоматизировать, что позволяет использовать его для непрерывного контроля технологических процессов.

n Более распространены методы потенциометрического титрования, с помощью которых определяют широкий круг веществ в водных и неводных средах. В этих методах регистрируют изменение потенциала индикаторного электрода в процессе титрования исследуемого раствора стандартным раствором реагента в зависимости от объема последнего. Потенциометрическое титрование проводят с использованием различных реакций: кислотно-основного и окислительновосстановительных взаимодействий, осаждения и комплексообразования.

n Точку эквивалентности при потенциометрических титрованиях определяют графическим методом на кривой титрования. Обычно используют одну из следующих видов кривых титрования: интегральную, дифференциальную или кривую Грана.

n Интегральная кривая титрования (рис. а) строится в координатах E - VТ. Точка эквивалентности находится в середине скачка титрования. n Дифференциальная кривая титрования (рис. б) строится в координатах: n ∆Е / ∆V- VT. Точка эквивалентности находится в вершине кривой титрования. Дифференциальная кривая титрования дает более точное определение точки эквивалентности, чем интегральная. n Кривая титрования в методе Грана (рис. в) строится в координатах: ∆V / ∆Е -VT. Точка эквивалентности находится на пересечении двух прямых линий. Этой кривой удобно пользоваться для определения точки эквивалентности при титровании разбавленных растворов.

n В методах кислотно-основного титрования в качестве индикаторного можно использовать любой электрод, обратимый к ионам Н+ (водородный, хингидронный, сурьмяный, стеклянный); наиболее распространен стеклянный электрод. Окислительновосстановительное титрование проводят с электродами из благородных металлов (чаще всего с платиновым).

1. Титруется сильная кислота (HCl) сильным основанием (Na. OH) До т. э. p. Н = -lg В т. э. = p. Н=p. OH = 7 После т. э. p. Н=14+ lg 2. Титруется сильное основание (Na. OH) сильной кислотой (HCl) До т. э. p. Н=14+ lg В т. э. = p. Н=p. OH = 7 После т. э. p. Н = -lg

3. Титруется слабая кислота (CH 3 COOH) сильным основанием (Na. OH) До начала титрования p. Н = 0, 5 р. К – 0, 5 lg. Скисл До т. э. p. Н = р. К - lg. Скисл + lg. Ссоли В т. э. = p. Н= 7 + 0, 5 р. К + 0, 5 lg. Ссоли После т. э. p. Н=14+ lg. Сосн 4. Титруется слабое основание (NH 4 OH) сильной кислотой (HCl) До начала титрования p. Н= 14 - 0, 5 р. К + 0, 5 lg. Сосн До т. э. p. Н= 14 - р. К + lg. Сосн – lg. Ссоли В т. э. = p. Н= 7 - 0, 5 р. К - 0, 5 lg. Сосн После т. э. p. Н = - lg. Скисл

n В методах осадительного и комплексометрического титрования индикаторный (ионоселективный или металлический) электрод должен быть обратимым относительно одного из ионов, участвующих в реакции. Вблизи точки эквивалентности наблюдается резкое изменение (скачок) электродного потенциала E, обусловленное заменой одной электрохимической реакции другой с соответствующим изменением E 0.

n Потенциометрическое титрование имеет ряд преимуществ по сравнению с титриметрическими методами, в которых применяют химические индикаторы: объективность и точность в установлении конечной точки титрования, низкая граница определяемых концентраций, возможность титрования мутных и окрашенных растворов, возможность дифференцированного (раздельного) определения компонентов смесей из одной порции раствора, если соответствующие Е 0 достаточно различаются.

n Потенциометрическое титрование можно проводить автоматически до заданного значения потенциала, кривые титрования записывают как в интегральной, так и в дифференцированной форме. По этим кривым можно определять "кажущиеся" константы равновесия разложения процессов.

КЛАССИФИКАЦИЯ ЭЛЕКТРОДОВ n Для потенциометрических измерений применяют электрохимические цепи, содержащие два электрода: индикаторный и электрод сравнения. Если оба электрода погружены в анализируемый раствор, то такая цепь называется цепью без переноса. Если электрод сравнения соединяют с анализируемым раствором через жидкостный контакт (солевой мостик), то цепь называется цепью с переносом. n

В потенциометрическом анализе используют преимущественно цепи с переносом. Схематически такую цепь изображают следующим образом: Индикаторный электрод Анализируемый Солевой раствор мостик Электрод сравнения

n Индикаторным называют электрод, потенциал которого определяет активность анализируемого иона в соответствии с уравнением Нернста. Электродом сравнения называют электрод, потенциал которого постоянен и не зависит от концентрации ионов в растворе. Солевой мостик служит для предотвращения смешивания анализируемого раствора и раствора электрода сравнения. n В качестве солевого мостика используют насыщенные растворы солей KCl, КNО 3 и других с близкими значениями подвижностей катиона и аниона.

n В качестве индикаторных в потенциометрическом анализе применяют: n 1. Электроды, на поверхности которых протекают реакции с обменом электронов. Их называют электронообменными, или окислительновосстановительными. В качестве таких электродов применяют электроды из химически инертных металлов - платины, золота и др. В аналитической практике находит применение выпускаемый промышленностью точечный платиновый электрод ЭПВ-1 -100 и изготовленный из специального стекла мембранный окислительно-восстановительный электрод ЭО - 1.

n 2. Электроды, на поверхности которых протекают реакции обмена иона. Их называют ионообменными, или ионоселективными электродами. Основным элементом ионоселективных электродов является ионочувствительная мембрана. Поэтому их также иногда называют мембранными. n Ионоселективные электроды изготавливают: n - с твердыми мембранами; n - со стеклянными мембранами; n - с жидкостными мембранами.

n Электроды с твердыми мембранами. В таких электродах мембрана изготовлена из малорастворимого кристаллического вещества с ионным типом электрической проводимости. Конструктивно электрод представляет собой трубку диаметром около 1 см из инертного полимера (обычно поливинилхлорида), к торцу которой приклеена тонкая (~0, 5 мм) мембрана. В трубку заливают внутренний раствор сравнения, в который погружают электрод сравнения. В настоящее время промышленностью выпускаются электроды с твердыми мембранами, селективные к F- -ионам (мембрана на основе монокристалла Lа. F 3), к CI - , Br - и I - -ионам (мембраны на основе смеси серебра сульфида и соответствующего серебра галогенида).

n Электроды со стеклянными мембранами. Их изготавливают из специального электродного стекла, в состав которого входят оксиды алюминия, натрия, калия, бора и др. Мембрана таких электродов представляет собой тонкостенный шарик (~0, 1 мм) диаметром 5 - 8 мм. n В настоящее время промышленность выпускает стеклянные электроды, селективные только к катионам Н+, Na+, К+, Аg+, NH 4+. В этих электродах не только мембрана, но и сам корпус изготовлены из стекла.

n Электроды с жидкостными мембранами. В таких электродах жидкие мембраны, представляющие собой растворенные в органических растворителях ионообменные вещества, отделяют от анализируемого раствора гидрофобными мелкопористыми пленками, пористыми дисками или гидрофобизированными керамическими диафрагмами. Их основным недостатком является постепенное вымывание анализируемым раствором ионообменника, что сокращает срок работы электрода.

n Этих трудностей удалось избежать после разработки электродов с пленочными мембранами. В таких электродах в тонкую мембрану из гидрофобного полимера (поливинилхлорида) вводят пластификатор и растворенное в нем электродоактивное вещество, вступающее в ионообменную реакцию с анализируемым ионом в растворе. В настоящее время промышленность выпускает пленочные ионоселективные электроды на катионы Na+, К+, NH 4+, Са 2+, Mg 2+; электроды для определения общей жесткости воды; на анионы галогенидов, CNS-, NО 3 -. Существуют электроды и на другие ионы.

n В качестве электродов сравнения в настоящее время используют хлорсеребряные электроды. Хлорсеребряный электрод представляет собой серебряную проволоку, покрытую слоем Аg. Сl и погруженную в насыщенный раствор КС 1. Современная конструкция электродов сравнения совмещает с собой и солевой мостик.

n Потенциометрические методы анализа широко используют для автоматизации контроля технологических процессов в химической, нефтехимической, пищевой и других отраслях промышленности, в медицине, биологии, геологии, а также при контроле загрязнений окружающей среды.

n КУЛОНОМЕТРИЯ n Кулонометрия - электрохимический метод анализа, который основан на измерении количества электричества (кулонов), затраченного на электроокисление или восстановление анализируемого вещества.

Количество вещества, содержащееся в анализируемой пробе, рассчитывают по уравнению: m = M Q / F n n где m - количество вещества в анализируемом растворе, г; n М – молярная масса анализируемого компонента (вещества или иона); Q - количество электричества, затраченное на электрохимическое окисление или восстановление анализируемого компонента, Кл; F - число Фарадея, равное 96 500 Кл/моль; п - количество электронов, участвующих в электрохимическом процессе. Количество электричества рассчитывается по формуле: Q = I t n где I - сила тока, А; t - продолжительность электролиза, с.

n В кулонометрии различают два вида анализа: n 1) прямую кулонометрию; n 2) кулонометрическое титрование. n Для обоих видов кулонометрии должно выполняться условие: электрохимическому восстановлению или окислению должно подвергаться только анализируемое вещество со 100 % - ным выходом по току.

n Метод прямой кулонометрии очень чувствителен. Им можно определить до 10 -9 г вещества в пробе. Ошибка определений не превышает 0, 02 %. n Кулонометрическое титрование имеет существенное преимущество перед обычным титрованием. Его применение исключает необходимость приготовления и стандартизации титранта, становится возможным применение нестойких титрантов: серебра (I), олова (II), меди (II), титана (III) и др. n Кулонометрически может быть выполнен любой вид титрования: кислотно-основное, осадительное, комплексонометрическое, окислительно-восстановительное. Метод кулонометрического титрования по точности и чувствительности превосходит другие методы титрования. Он пригоден для титрования очень разбавленных растворов концентрацией до 10 -6 моль/дм 3 , а погрешность определений не превышает 0, 1 -0, 05 %.

Кондуктометрия (от англ. conductivity - электропроводность и метрия) - совокупность электрохимических методов анализа, основанных на измерении электропроводности растворов. Кондуктометрия применяется для определения концентрации растворов солей, кислот, оснований, для контроля состава некоторых промышленных растворов. Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению. Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах) и косвенные (например, в газовом анализе) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование.

n ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ (ФА), совокупность методов молекулярноабсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединения с подходящим реагентом. Концентрацию определяемого компонента устанавливают по закону Бугера -Ламберта – Бера.

Закон выражается следующей формулой: n где I 0 - интенсивность входящего пучка, l - толщина слоя вещества, через которое проходит свет, kλ - показатель поглощения.

n Колориметрия (от лат. color - цвет и греч. metreo - измеряю) - метод анализа, основанный на определении концентрации вещества по интенсивности окраски растворов (более точно - поглощения света растворами). Определяют интенсивность окраски либо визуально, либо с помощью приборов, например колориметров.

Фотометрия отличается от спектрофотометрии тем, что поглощение света измеряют в видимой области спектра, реже - в ближних УФ и ИК областях (т. е. в интервале длин волн от ~ 315 до ~ 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10 -100 нм) используют не монохроматоры, а узкополосные светофильтры.

Приборами для фотоколориметрии служат фотоэлектроколориметры (ФЭК), характеризующиеся простотой оптической и электрической схем. Большинство ФЭК имеет набор из 10 -15 светофильтров и представляет собой двухлучевые приборы, в которых пучок света от источника излучения (лампа накаливания, редко ртутная лампа) проходит через светофильтр и делитель светового потока (обычно призму), который делит пучок на два, направляемые через кюветы с исследуемым раствором и с раствором сравнения.

После кювет параллельные световые пучки проходят через калиброванные ослабители (диафрагмы), предназначенные для уравнивания интенсивностей световых потоков, и попадают на два приемника излучения (фотоэлементы), подключенные по дифференциальной схеме к нуль - индикатору (гальванометр, индикаторная лампа). Недостаток приборов отсутствие монохроматора, что приводит к потере селективности измерений; достоинства простота конструкции и высокая чувствительность благодаря большой светосиле.

Измеряемый диапазон оптической плотности составляет приблизительно 0, 05 -3, 0, что позволяет определять многие элементы и их соединения в широком интервале содержаний - от ~ 10 -6 до 50% по массе. Для дополнительного повышения чувствительности и селективности определений существенное значение имеют подбор реагентов, образующих интенсивно окрашенные комплексные соединений с определяемыми веществами, выбор состава растворов и условий измерений. Погрешности определения составляют 5%.

АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, изучает спектры поглощения электромагнитного излучения атомами и молекулами вещества в различных агрегатных состояниях. Интенсивность светового потока при его прохождении через исследуемую среду уменьшается вследствие превращения энергии излучения в различные формы внутренней энергии вещества и (или) в энергию вторичного излучения.

Поглощательная способность вещества зависит главным образом от электронного строения атомов и молекул, а также от длины волны и поляризации падающего света, толщины слоя, концентрации вещества, температуры, наличия электрических и магнитных полей.

Применение абсорбционной спектроскопии основано на зако не Бугера - Ламберта - Бера - физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Для измерения поглощательной способности используют спектрофотометры -оптические приборы, состоящие из источника света, камеры для образцов, монохроматора (призма или дифракционная решетка) и детектора. Сигнал от детектора регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ.

Для определения концентрации исследуемого вещества используют: Метод градуировочного графика. Измеряют интенсивность аналитического сигнала у нескольких стандартных образцов или стандартных растворов и строят градуировочный график в координатах I = f(с) или I = f(lgc), где с - концентрация компонента в стандартном растворе или стандартном образце. В тех же условиях измеряют интенсивность сигнала у анализируемой пробы и по градуировочному графику находят концентрацию. .

Метод добавок. Измеряют интенсивность аналитического сигнала пробы Ix, а затем интенсивность сигнала пробы с известной добавкой стандартного раствора Ix+стt. Концентрацию вещества в пробе рассчитывают по соотношению сx = сст. Ix/(Ix+ст - Ix).

Теоретические и экспериментальные методы Ф. находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии, при расчётах теплообмена излучением и во многих др. областях науки и производства.

n Определение содержание ингредиентов атмосферном воздухе населенных пунктов и воздухе рабочей зоны oксид азота (II), оксид азота (IV), аммиак, ангидрид сернистый, мышьяк, содержание серной кислоты, сульфаты, сероводород, фенол, формальдегид. n В питьевой воде: аммиак и ионы аммония, мышьяк, нитраты и нитриты, селен, сульфаты, общее железо. n В почве: алюминий (подвижный), нитраты, аммоний, кальций, магний, подвижные формы серы, фосфора, сульфаты, валовое содержание и подвижные формы железа, кобальта, меди, марганца, никеля, хрома. n Анализ нефтепродуктов, минеральных масел и др. органических веществ.

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны на измерении эффекта, вызванного взаимодействием с веществом излучения - потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физический эффект представляет собой сигнал. В результате нескольких или многих измерений величины сигнала и их статистической обработки получают аналитический сигнал. Он связан с концентрацией или массой определяемых компонентов.

n Исходя из характера используемого излучения, Ф. м. а. можно разделить на три группы: n 1) методы, использующие первичное излучение, поглощаемое образцом; n 2) применяющие первичное излучение, рассеиваемое образцом; n 3) использующие вторичное излучение, испускаемое образцом.

n 1) спектроскопические методы анализа - атомно-эмиссионная, атомно-абсорбционная, атомно-флуоресцентная спектрометрия, ультрафиолетовая спектроскопия, рентгеновская спектроскопия, рентгенофлуоресцентный метод и рентгеноспектральный микроанализ, массспектрометрия, электронный парамагнитный резонанс и ядерный магнитный резонанс, электронная спектрометрия;

n 2) ядерно-физический и радиохимический методы - радиоактивационный анализ, n ядерная гамма-резонансная, или мёссбауэровская спектроскопия, метод изотопного разбавления, n 3) прочие методы, например, рентгеновская дифрактометрия.

Аналитическая химия II. Инструментальные методы анализа Майстренко В. Н. Башкирский государственный университет Кафедра аналитической химии V_maystrenko@mail. ru Тел: 229 -97 -12

Аналитическая химия – наука об определении химического состава веществ и отчасти их химического строения Химические методы анализа Физико-химические методы анализа Физические методы анализа Инструментальные методы анализа

Инструментальные методы анализа - методы аналитической химии, для выполнения которых требуется электрохимическая, оптическая, радио-химическая и иная аппаратура. К инструментальным методам анализа относятся: электрохимические методы - потенциометрия (ионометрия), кулонометрия, вольтамперометрия, кондуктометрия и др. ; методы, основанные на испускании или погло-щении электромагнитного излучения – эмиссионная, абсорбционная, флуоресцентная атомная и молеку-лярная спектроскопия, фотометрические методы, рентгеноспектральный анализ и др. ; масс-спектральный анализ; ЯМР, ЭПР, методы, основанные на измерении радиоактивности и др.

Дефиниция y = f(x) х y Аналитический сигнал Сигнал, содержащий количественную информацию о величине, функционально связанной с содержанием определяемого компонента, и регистрируемый в ходе анализа вещества или материала "Контроль объекта аналитический. Термины и определения. " ГОСТ Р 52361– 2005.

Дефиниции Измерение величины y = f(x) х1 хn х2 Определение вещества Анализ объекта y 1 y 2 y 3 yn

Дефиниция Сигнал, y Градуировочная функция ∆y α ∆х b tgα = а = ∆y/∆х Концентрация, х y = f(x) y = b + аx

Дефиниция y = f(x) х Предел обнаружения y Сlim = y 0 + 3σ Концентрация, x

Дефиниция y = f(x) lgх Предел обнаружения y Сlim = y 0 + 3σ Концентрация, lgx

Дефиниция y = f(x) х Интервал определяемых концентраций y a = tgα y = ax + b Концентрация, x

Метод и методика анализа Метод анализа – достаточно универсальный и теоретически обоснованный способ определения состава безотносительно к определяемому компоненту и (обычно) к анализируемому объекту. Методика анализа – подробное описание анализа данного объекта с использованием выбранного метода. "Контроль объекта аналитический. Термины и определения. " ГОСТ Р 52361– 2005.

Методы аналитической химии Методы отбора проб (пробоотбора) Методы разложения проб Методы разделения компонентов Методы концентрирования Методы обнаружения (идентификации) Методы определения

Проба Проба – или образец – предмет исследования аналитика, объект, взятый для анализа. По ГОСТ: проба - часть вещества (материала), являющегося объектом аналитического контроля, отобранная для анализа и/или исследования его структуры, и/или определе-ния свойств, отражающая его химический состав и/или структуру, и/или свойства. Представительная проба вещества или материала - объекта аналитического контроля – проба, которая по химическому составу и/или свойствам, и/или структуре идентична объекту аналитического контроля, от которого она отобрана.

Классификация проб В зависимости от способа получения: разовая, точечная (единичная, частная), мгновенная, суточная и т. п. В зависимости от стадии первичной обработки: исходная, промежуточная, объединенная, средняя, сокращенная, лабораторная, аналитическая и др. В зависимости от назначения: контрольная, рабочая, резервная, арбитражная и др.

Абсолютные и относительные методы анализа Абсолютные методы – не требуют градуировки и стандартных образцов (гравиметрия, кулонометрия и т. д.). Относительные методы – параметры градуировочной функции определяют экспериментально (потенциометрия, вольтамперометрия и т. д.) с использованием стандартных образцов.

Одномерные и многомерные методы Одномерные методы основаны на измерении интенсивности сигнала в единственной измеритель-ной позиции. Сигнал, y Многомерные методы – используются несколько измерительных позиций. Положение максимума пика или полосы – качественная характеристика. Высота или площадь пика – количественная характеристика. Вторая координата, z

Классификация методов анализа Общая классификация качественный / количественный элементный / изотопный / молекулярный / структурно-групповой валовый / распределительный (локальный) / вещественный / фазовый контактный / дистанционный деструктивный / недеструктив-ный макро- > 0. 1 г полумикро- 0. 1 - 0. 01 г микро- 0. 01 – 0. 001 г ультрамикро- 10 -6 г субмикро- 10 -9 г макро- / полумикро- / ультрамикро- / субмикро-

Классификация методов анализа По способу регистрации сигнала Химические (погрешность

Классификация методов анализа По способу регистрации сигнала Химические (погрешность

Классификация методов анализа По способу регистрации сигнала Химические Физические Биологические Физико-химические Спектроскопические Масс-спектральные Основанные на радиоактивности Электрохимические Биохимические Термические

По способу измерения сигнала Спектроскопия Молекулярная Атомная Ядерная Электрохимические методы Вольтамперометрия Потенциометрия Кондуктометрия Кулонометрия Хронопотенциометрия, хроноамперометрия

Классификация По объекту анализа х по агрегатному состоянию по химической природе по происхождению объекта по степени распространенности и важности по степени чистоты

Распределительный анализ Анализ распределения элемента по поверхности Анализ распределения элемента по слоям – т. е. распределение по глубине и в целом – по объему. Распределение отдельных фаз по поверхности и по объему

Критерии сравнения Аналитические характеристики Метрологические характеристики Требования к пробоподготовке Особенности приборного оснащения Специальные требования, связанные с природой объекта контроля Экономические характеристики

Литература 1. Основы аналитической химии. Кн. 2. Методы химического анализа. / Под ред. Ю. А. Золотова. 2 -е изд. М. : Высшая школа, 2004. 2. Аналитическая химия. Физические и физико-химические методы анализа. Под ред. О. М. Петрухина. М. : Химия, 2001. 3. Васильев В. П. Аналитическая химия. Кн. 2. Физико-химические методы анализа. М. : Дрофа, 2004. Дополнительная литература 1. Кристиан Г. Аналитическая химия. В 2 -х т. М. : БИНОМ, 2009. 2. Аналитическая химия. Проблемы и подходы: В 2 -х т. / Под ред. Р. Кельнера, Ж-М. Мерме, М. Отто, Н. Видмера. М. : Мир, 2004. 3. Отто М. Современные методы аналитической химии. В 2 т. М. : Техносфера, 2003.

Инструментальные методы анализа: спектры атомов и молекул Майстренко В. Н. Башкирский государственный университет Кафедра аналитической химии V_maystrenko@mail. ru Тел: 229 -97 -12

В арсенале современной аналитической химии важнейшее место занимают методы атомной оптической спектроскопии, основанные на измерении интенсивности электромагнитного излучения, испускаемого или поглощаемого атомами элементов, которые находятся в газо- или парообразном состоянии. Эти методы являются многоэлементными и широко используются для установления состава различных объектов – сплавов, минералов, руд, пищевых продуктов, объектов окружающей среды и др.

История атомного спектрального анализа началась с опытов Исаака Ньютона (1666 г) по разложению света в спектр. Первые атомные спектры наблюдали в начале XIX века в ходе астрономических исследований. Возникновение спектрального анализа как метода определения химичес-кого состава вещества относят к 1859 г. , когда немецкие ученые Г. Кирхгоф и Р. Бунзен, исследуя поведение солей металлов в пламени, наблюдали появление линий в спектрах элементов. Густав Кирхгоф (слева) и Роберт Бунзен (справа) Спектроскоп Кирхгофа и Бунзена

Эксперимент Бунзена-Кирхгофа А – сигарный ящик, B – часть подзорной трубы, С – подзорная труба, D – газовая горелка Бунзена, E – штатив с солью натрия, F – призма из стекла с CS 2, G – зеркало, H – поворотное устройство

Историческая справка Конец XX века 1960 -е годы ААС, ИСП АЭС ИСП - МС 20 -е годы XX века Середина XIX века Методы количественного анализа Качественный и полуколичественный анализ

Спектры атомов Атомы химических элементов имеют строго определённые частоты, на которых они излучают или поглощают свет. При этом на спектрах элементов наблюдаются светлые или темные линии в определённых местах, характерные для каждого элемента. Атомарные спектры получают переведением веществ в парообраз-ное состояние путём нагревания до 1000- 10000 °C. В качестве источни-ков возбуждения атомов применяют искру, дугу переменного тока, пламя или плазму различных газов, лазеры и др. Спектры поглощения и испускания атомов натрия

Спектральные линии характеризуют частотой излучения, которая соответствует квантовому переходу между уровнями энергии Еi и Еk атома согласно соотношению h = Еi - Еk , где h – постоянная Планка, а также длиной волны = с / (с – скорость света), волновым числом ’ = 1/ и энергией фотона h. Частоты спектральных линий выражают в обратных секундах (с-1), длины волн – в нм, мкм и ангстремах, волновые числа – в обратных сантиметрах (см-1), энергию фотонов в электронвольтах (э. В). Спектры испускания (эмиссионные) получают при возбуждении атомов различными способами. Время жизни возбужденного состояния 10 -7 – 10 -8 с. В течение этого времени атом испускает квант электро-магнитного излучения и переходит в состояние с более низкой энергией. Спектры поглощения (абсорбционные) наблюдаются при прохож-дении электромагнитного излучения, имеющего непрерывный спектр, через пары или газы атомов. Возникновение оптических спектров и их характер определяет система электронов атома, которые характеризуются четыремя квантовыми числами: главным квантовым числом (уровни K, L, M, N…Q), орбитальным квантовым числом (подуровни s, p, d, f…), магнитным и спиновым квантовыми числами.

Спектр Совокупность спектральных линий, принадлежащих данной частице Термическое возбуждение Эмиссионный спектр Нетермическое возбуждение Спектр люминесценции Быстрая (спонтанная) Спектр флуоресценции (атомы и молекулы) Медленная Спектр фосфоресценции (молекулы)

Спектры атомов с малым числом валентных электронов (щелочные металлы, водород) имеют относительно мало линий (менее 100) в диапазоне 200 - 800 нм. Атомы с более сложными электронными оболочками (элементы побочных групп) имеют спектры с большим числом линий (Cu – более 500, Fe – более 3000, U – несколько тысяч). Линии, обусловленные переходом электронов на основной энергетический уровень, называются резонансными. Вследствие высокой интенсивности они обеспечивают наибольшую чувствитель-ность определений и используются для аналитических целей. Для возбуждения резонансных линий щелочных металлов необхо-дима небольшая энергия, тогда как для неметаллов она высокая и спектры из видимой области смещаются в труднодоступную ультра-фиолетовую область: для Na – 589 нм, Mg – 285 нм, Si – 251 нм, P – 176 нм. Основная область применения атомной спектроскопии – опреде-ление элементов с металлическими и полуметаллическими свойствами. Для получения количественной информации измеряют интенсив-ность одной из спектральных линий определяемого элемента. Процессы, происходящие с атомом при поглощении или испускании фотона, описывают с помощью спектральных термов, характеризующих энергетическое состояние поглощающего или испускающего атома. Спектральные термы получают путем векторного сложения орбитальных моментов и спинов всех электронов атома.

Src="https://present5.com/presentation/89020358_158004652/image-47.jpg" alt="Спектральные термы Формула Бальмера (m > n) Серия Лаймана n = 1 Серия Бальмера:"> Спектральные термы Формула Бальмера (m > n) Серия Лаймана n = 1 Серия Бальмера: n = 2 Серия Пашена: n = 3 Серия Брэкетта: n = 4 Терм: Спектральный терм: R = 109 677 см− 1 – постоянная Ридберга, m – целые числа.

Спектральные термы многоэлектронных атомов Учет заряда ядра: He+, Li 2+, Be 3+ Учет суммарного орбитального момента и суммарного спина

Длины волн электромагнитного излучения Интервал длин волн Участок спектра 10 -4 – 0, 1 нм γ-Излучение 0, 01 – 10 нм Рентгеновское излучение 10 – 400 нм Ультрафиолетовое излучение 400 – 760 нм Видимый свет 760 – 106 нм Инфракрасное излучение 10 -3 – 1 м Микроволновое (СВЧ) >1 м Радиоволны

Интенсивность спектральных линий Энергия, поглощаемая, излучаемая или рассеиваемая в единицу времени Спектр испускания: Рентгеновская спектроскопия, АЭС, АФС Спектр поглощения: ААС, UV-Vis, ИК, микроволновая и радиочастотная спектроскопия

Ширина спектральных линий естественная УФ: 10 -5 нм тепловое движение (допплеровское уширение) УФ: 10 -3 -10 -2 нм соударение частиц (лоренцево уширение) расщепление энергетических уровней в магнитном поле (эффект Зеемана)

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетического состояния в другое. Молекулярные спектры определяются составом молекул, их структурой, характером химических связей и взаимодействием с окружающими атомами и молекулами. Наиболее характерными являются молекулярные спектры молекул разреженных газов, которые состоят из узких линий. Молекулярные спектры состоят из электронных, колебательных и вращательных спектров и лежат в диапазоне электромагнитных волн от радиочастот до рентгеновской области спектра. Частоты переходов между вращательными уровнями энергии обычно попадают в микроволновую область, частоты переходов между колебательными уровнями - в ИК-область, а частоты переходов между электронными уровнями - в видимую и УФ-области спектра. Часто вращательные переходы попадают в ИК-область, колебательные - в видимую область, электронные - в ИК-область. Электронные переходы сопровождаются изменением колебательной энергии молекул, а при колебательных переходах изменяется вращательная энергия. Поэтому электронные спектры обычно представляют собой электронно-колебательные полосы. При высоком разрешении обнаруживается и вращательная структура.

Молекулярные спектры веществ: а – гладкий контур, б – следы колебательной структуры, в – спектр поглощения паров антрацена с четкой колебательной структурой

Электронные спектры молекул Электронные спектры обусловлены переходами между электронными энергетическими уровнями. Чем определяются электронные спектры? Для атомов электронной конфигурацией атомов Для молекул электронной конфигурацией молекул Электронные переходы в молекулах, как правило, имеют энергию, соответствующую УФ- и видимой областям электромагнитного спектра.

Колебательные молекулярные спектры обусловлены квантовыми переходами между колебательными уровнями энергии молекул. Экспериментально наблюдают ИК-спектры поглощения и спектры комбинационного рассеяния (КР-спектры) полученной энергии. В простейшем случае двухатомную молекулу представляют моделью двух взаимодействующих точечных масс M 1 и M 2. При переходе между соседними колебательными уровнями поглощается фотон с энергией h = Ev+1 – Ev и частотой. F

Существуют два основных вида колебаний в молекулах: валентные (), при которых атомы совершают колебания вдоль связей, – связи попеременно то растягиваются, то укорачиваются (симметричные и асимметричные колебания); деформационные (), при которых происходит изменение валентных углов между связями одного атома (ножничные, маятниковые, веерные, крутильные колебания). Валентное симметричное (s) Деформационное антисимметричное (аs) (маятниковое) Валентное антисимметричное (as), (a) Деформационное веерное () Деформационное симметричное (s) (ножничное) Деформационное крутильное ()

Нормальные колебания молекулы воды (s) = 3652 см-1 (as) = 3756 см-1 N = 3 n-6 = 3 x 3 – 6 = 3 (s) = 1595 см-1

Частота колебаний зависит от массы атомов (легче атом – выше частота) C – H 3000 см-1 C – D 2200 см-1 C – O 1100 см-1 C – Cl 700 см-1 Частота колебаний зависит от энергии связи (связь прочнее – выше частота) C С 2143 см-1 C = O 1715 см-1 C – O 1100 см-1

Типичные частоты колебаний функциональных групп, см-1 Группа Диапазон частот Валентные колебания Группа Диапазон частот Деформационные колебания (O – H) 3600 – 3000 (O – H), (N – H) 1650 – 1550 (C C), (C N) 2400 – 2100 (C – H) 1450 – 1250 (P – H), (C – H) 2250 – 2100 (C – O), (C – N) 1300 – 1000 (C = O) 1850 – 1650 (C – H), (N – H) 950 – 800 (C = C), (N = O) 1750 - 1600 (Si – O), (P = O) 700 – 550 (N = N) 1650 - 1450 (S – O) 650 - 450 (Si – O), (P = O) 1300 - 1000 (S – O) 1000 – 800 (C – Cl) 750 - 690

Литература 1. Основы аналитической химии. Кн. 2. Методы химического анализа. / Под ред. Ю. А. Золотова. 2 -е изд. М. : Высшая школа, 2004. 2. Аналитическая химия. Физические и физико-химические методы анализа. Под ред. О. М. Петрухина. М. : Химия, 2001. 3. Васильев В. П. Аналитическая химия. Кн. 2. Физико-химические методы анализа. М. : Дрофа, 2004. Дополнительная литература 1. Кристиан Г. Аналитическая химия. В 2 -х т. М. : БИНОМ, 2009. 2. Аналитическая химия. Проблемы и подходы: В 2 т. / Под ред. Р. Кельнера, Ж-М. Мерме, М. Отто, Н. Видмера. М. : Мир, 2004. 3. Отто М. Современные методы аналитической химии. В 2 т. М. : Техносфера, 2003. 4. Кузяков Ю. Я. , Семененко К. А. , Зоров Н. Б. Методы спектрального анализа. М. : МГУ, 1990. 5. Казицына Л. А. , Куплетская Н. Б. Применение УФ-, ИК- и ЯМР- спектроскопии в органической химии. М. : Высшая школа, 1971.

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего, химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Сенсоры связаны с системой накопления и автоматической обработки информации.

Условно инструментальные методы анализа можно разделить на три группы: спектральные и оптические, электрохимические и хроматографические методы анализа.

Спектральные и оптические методы анализа основаны на взаимодействии определяемого вещества и электромагнитного излучения (ЭМИ). Методы классифицируются по нескольким признакам – принадлежности ЭМИ к определенной части спектра (УФ – спектроскопия, фотоэлектроколориметрия, ИК – спектроскопия), уровню взаимодействия веществ, с ЭМИ (атом, молекула, ядро атома), физическим явлением (эмиссия, абсорбция и т.д.). Классификация спектральных и оптических методов по основным признакам приведена в табл. 12.

Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.

Таблица 12.

Классификация спектральных и оптических методов

Физическое явление Уровень взаимодействия
Атом Молекула
Спектральные методы
Поглощение света (адсорбция) Атомно-адсорбционная спектроскопия (ААС) Молекулярно-адсорбционная спектроскопия (МАС): фотоэлектроколориметрия, спектрофотометрия
Излучение света (эмиссия) Атомно-эмиссионная спектроскопия (АЭС): фотометрия пламени Молекулярно-эмиссионная спектроскопия (МЭС): люминесцентный анализ
Вторичная эмиссия Атомно-флуорисцентная спектроскопия (АФС) Молекулярно- флуорисцентная спектроскопия (МФС)
Рассеивание света - Спектроскопия рассеяния: нефелометрия, турбидеметрия
Оптические методы
Преломление света - Рефрактометрия
Вращение плоскополяризованного света - Поляриметрия

При эмиссионном анализе определяемое вещество, находящееся в газовой фазе, подвергают возбуждению, сообщая системе энергию в виде ЭМИ. Энергия, необходимая для перехода атома из нормального в возбужденное состояние, называется энергией возбуждения (потенциалом возбуждения ) . В возбужденном состоянии атом находится 10 -9 – 10 -8 с, затем, возвращаясь на более низкий энергетический уровень, испускает квант света в строго определенной частоты и длины волны.

Фотометрия пламени – метод анализа, основанный на фотометрировании излучения возбужденных в пламени атомов. Вследствие высокой температуры в пламени возбуждаются спектры элементов, имеющие низкую энергию возбуждения, - щелочные и щелочноземельные металлы.

Качественный анализ проводят по окраске перлов пламени и характерным спектральным линиям элементов. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии веществ тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь или бор), бледно-голубой (свинец или мышьяк).

Количественный анализ основан на эмпирической зависимости интенсивности спектральной линии определяемого элемента от его концентрации в пробе с использованием градуировочного графика.

Фотоэлектроколориметрия основана на поглощении света определяемым веществом в видимой области спектра (400 – 760 нм); это разновидность молекулярно-адсорбционной спектроскопии. В ходе анализа поток света, походя через светопоглощающий раствор, частично рассеивается, преломляется, но большая часть поглощается, и поэтому на выходе интенсивность потока света меньше, чем на входе. Этот метод применяют для качественного и количественного анализа истинных растворов.

Турбидиметрический метод основан на поглощении и рассеивании монохроматического света взвешенными частицами анализируемого вещества. Метод применяется для анализа суспензий, эмульсий, при определении в растворах, природных и технологических водах веществ (хлориды, сульфаты, фосфаты), способных образовывать труднорастворимые соединения.

К оптическим методам анализа относятся рефрактометрия и поляриметрия.

Рефрактометрический метод основан на преломлении света при прохождении луча через границу раздела прозрачных однородных сред. При падении луча света на границу раздела двух сред происходит частичное отражение от поверхности раздела и частичное распространение света в другой среде. Метод используют для идентификации и частоты веществ, количественного анализа.

Поляриметрия – оптический неспектральный метод анализа, основанный на вращении плоскополяризованного монохроматического луча света оптически активными веществами. Метод предназначен для качественного и количественного анализа только оптически активных веществ (сахарозы, глюкозы и др.), способных вращать плоскость поляризации света.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током. Эти методы делятся на три группы: методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия ); методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия ); методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и электрод сравнения. Электрод, потенциал которого зависит от активности определяемого ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения . Например, при определении рН растворов в качестве индикаторного электрода используют стеклянный электрод, а электрода сравнения – хлорсеребряный (см. тему 9).

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации (активности) ионов в растворе. При расчетах используют уравнение Нернста.

Вольтамперометрия – группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обусловливающих возникновение диффузного тока. Методы основаны на изучении вольтамперных кривых (вольтамперограмм), отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

В методах вольтамперометрии применяют двух- и трехэлектродные ячейки. Индикаторные электроды – рабочие поляризуемые электроды, на которых протекают процессы электроокисления или электровосстановления вещества; электроды сравнения – электроды второго рода (насыщенные хлорсеребряный или каломельный).

Если в качестве рабочего поляризуемого электрода применяют ртутный капающий с постоянно обновляющейся поверхностью, а электродом сравнения служит слой ртути на дне ячейки, то метод называется полярографией .

В современной вольтамперометрии применяют любые индикаторные электроды (вращающиеся или стационарный платиновый или графитовый, стационарный ртутный), кроме капающего ртутного электрода.

Кондуктометрический метод основан на измеренииэлектрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц. Объекты анализа – растворы электролитов. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматогафические методы разделения, идентификации и количественного определения основаны на различных скоростях движения отдельных компонентов в потоке подвижной фазы вдоль слоя неподвижной фазы, причем анализируемые вещества находятся в обеих фазах. Эффективность разделения достигается за счет многократно повторяющихся циклов сорбция – десорбция. При этом компоненты по-разному распределяются между подвижной и неподвижной фазами в соответствии с их свойствами, в результате происходит разделение. Условно хроматографические методы можно разделить на газовую хроматографию, ионообменную и бумажную.

Газовая хроматография – метод разделения летучих термостабильных соединений, основанный на распределении веществ между фазами, одна из которых – газ, другая – твердый сорбент или вязкая жидкость. Разделение компонентов смеси происходит из-за различной адсорбционной способности или растворимости анализируемых веществ при движении их газообразной смеси в колонке с потоком подвижной фазы вдоль неподвижной фазы.

Объекты анализа в газовой хроматографии – газы, жидкости и твердые вещества с молекулярной массой менее 400 и температурой кипения менее 300 0 С. При хроматографическом разделении анализируемые соединения не должны подвергаться деструкции.

Ионообменная хроматография – метод разделения и анализа веществ, основанный на эквивалентном обмене ионов анализируемой смеси и ионообменника (ионита). Происходит обмен ионами между фазами гетерогенной системы. Неподвижной фазой являются иониты; подвижной, как правило, вода, так как обладает хорошими растворяющими и ионизирующими свойствами. Соотношение концентраций обменивающихся ионов в растворе и фазе сорбентов (ионита) определяется ионообменным равновесием.

Хроматография на бумаге относится к плоскостной хроматографии, она основана на распределении анализируемых веществ между двумя несмешивающимися жидкостями. В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Вопросы для самоподготовки:

1. Что такое химическая идентификация вещества?

2. Какие виды анализа вам известны?

3. Что такое чистота веществ?

4. Как проводят идентификацию катионов неорганических веществ?

5. Как проводят идентификацию анионов неорганических веществ?

6. Как классифицируются методы количественного анализа?

7. Каковы основы гравиметрического метода анализа?

8. Какова характеристика титриметрических методов анализа?

9. Какова характеристика химических методов анализа?

10. Как классифицируют инструментальные методы анализа?

11. Каковы основы электрохимических методов анализа?

12. Каковы основы хроматографических методов анализа?

13. Каковы основы оптических методов анализа?

Литература:

1. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

2. Ахметов Н.С. Лабораторные и семинарские занятия по общей и неорганической химии. М.: Высшая шк. – 2003, 367 с.

3. Васильев В.П. Аналитическая химия. - М.: Высш. шк. – 1989, Ч. 1, 320 с, Ч. 2., 326 с.

4. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

5. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

6. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

7. Общая химия. Биофизичекая химия. Химия биогенных элементов./ Под ред Ю.А. Ершова - М.: Высш. шк. – 2002, 560 с.

8. Фролов В.В. Химия. – М.: Высш. шк. – 1986, 450 с.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O