Основные кислоты и их соли таблица. Химические свойства кислот. Взаимодействие кислот с солями

  • Физические и химические выражения порций, долей и количества вещества. Атомная единица массы, а.е.м. Моль вещества, постоянная Авогадро. Молярная масса. Относительные атомная и молекулярная масса вещества. Массовая доля химического элемента
  • Строение вещества. Ядерная модель строения атома. Состояние электрона в атоме. Заполнение электронами орбиталей, принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда
  • Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.
  • Периодическая система Менделеева. Высшие оксиды. Летучие водородные соединения. Растворимость, относительные молекулярные массы солей, кислот, оснований, оксидов, органических веществ. Ряды электроотрицательности, анионов, активности и напряжений металлов
  • Электрохимический ряд активности металлов и водорода таблица, электрохимический ряд напряжений металлов и водорода, ряд электроотрицательности химических элементов, ряд анионов
  • Химическая связь. Понятия. Правило октета. Металлы и неметаллы. Гибридизация электронных орбиталей. Валентные электроны, понятие валентности, понятие электроотрицательности
  • Виды химической связи. Ковалентная связь - полярная, неполярная. Характеристики, механизмы образования и виды ковалентной связи. Ионная связь. Степень окисления. Металлическая связь. Водородная связь.
  • Химические реакции. Понятия и признаки, Закон сохранения массы, Типы (соединения, разложения, замещения, обмена). Классификация: Обратимые и необратимые, Экзотермические и эндотермические, Окислительно-восстановительные, Гомогенные и гетерогенные
  • Вы сейчас здесь: Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ.
  • Химия неметаллов. Галогены. Сера. Азот. Углерод. Инертные газы
  • Химия металлов. Щелочные металлы. Элементы IIА группы. Алюминий. Железо
  • Закономерности течения химических реакций. Скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Катализ
  • Растворы. Электролитическая диссоциация. Понятия, растворимость, электролитическая диссоциация, теория электролитическoй диссоциации, степень диссоциации, диссоциация кислот, оснований и солей, нейтральная, щелочная и кислая среда
  • Реакции в растворах электролитов + Окислительно-восстановительные реакции. (Реакции ионного обмена. Образование малорастворимого, газообразного, малодиссоциирующего вещества. Гидролиз водных растворов солей. Окислитель. Восстановитель.)
  • Классификация органических соединений. Углеводороды. Производные углеводородов. Изомерия и гомология органических соединений
  • Важнейшие производные углеводородов: спирты, фенолы, карбонильные соединения, карбоновые кислоты, амины, аминокислоты
  • Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток.

    По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H 2 SO 4 серная кислота, H 2 SO 3 сернистая кислота, HNO 3 азотная кислота, H 3 PO 4 фосфорная кислота, H 2 CO 3 угольная кислота, H 2 SiO 3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H 2 S сероводородная кислота).

    В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н). Например, азотная кислота HNO 3 одноосновная, так как в молекуле её один атом водорода, серная кислота H 2 SO 4 двухосновная и т.д.

    Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

    Часть молекулы кислоты без водорода называется кислотным остатком.

    Кислотные остатки могут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO 3, -PO 4, -SiO 3) – это сложные остатки.

    В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

    H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

    Слово ангидрид означает безводный, то есть кислота без воды. Например,

    H 2 SO 4 – H 2 O → SO 3 . Бескислородные кислоты ангидридов не имеют.

    Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H 2 SO 4 – серная; H 2 SO 3 – угольная; H 2 SiO 3 – кремниевая и т.д.

    Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO 3 – азотная, HNO 2 – азотистая.

    Кислоты можно получать растворением ангидридов в воде. В случае, если ангидриды в воде не растворимы, кислоту можно получить действием другой более сильной кислоты на соль необходимой кислоты. Этот способ характерен как для кислородных так и бескислородных кислот. Бескислородные кислоты получают так же прямым синтезом из водорода и неметалла с последующим растворением полученного соединения в воде:

    H 2 + Cl 2 → 2 HCl;

    H 2 + S → H 2 S.

    Растворы полученных газообразных веществ HCl и H 2 S и являются кислотами.

    При обычных условиях кислоты бывают как в жидком, так и в твёрдом состоянии.

    Химические свойства кислот

    Растворыв кислот действуют на индикаторы. Все кислоты (кроме кремниевой) хорошо растворяются в воде. Специальные вещества – индикаторы позволяют определить присутствие кислоты.

    Индикаторы – это вещества сложного строения. Они меняют свою окраску в зависимоти от взаимодействия с разными химическими веществами. В нейтральных растворах - они имеют одну окраску, в растворах оснований – другую. При взаимодействии с кислотой они меняют свою окраску: индикатор метиловый оранжевый окрашивается в красный цвет, индикатор лакмус – тоже в красный цвет.

    Взаимодействуют с основаниями с образованием воды и соли, в которой содержится неизменный кислотный остаток (реакция нейтрализации):

    H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

    Взаимодействуют с основанными оксидами с образованием воды и соли (реакция нейтрализации). Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации:

    H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

    Взаимодействуют с металлами. Для взаимодействия кислот с металлами должны выполнятся некоторые условия:

    1. металл должен быть достаточно активным по отношению к кислотам (в ряду активности металлов он должен располагаться до водорода). Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами;

    2. кислота должна быть достаточно сильной (то есть способной отдавать ионы водорода H +).

    При протекании химических реакций кислоты с металлами образуется соль и выделяется водород (кроме взаимодействия металлов с азотной и концентрированной серной кислотами,):

    Zn + 2HCl → ZnCl 2 + H 2 ;

    Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

    Остались вопросы? Хотите знать больше о кислотах?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Называются вещества, диссоциирующие в растворах с образованием ионов водорода.

    Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.

    По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .

    По наличию кислорода различают кислородсодержащие кислоты ( HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты ( HCl , H 2 S , HCN и т.п.).

    По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.

    Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.

    Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» ( HClO 3 - хлорноватая кислота), «истая» ( HClO 2 - хлористая кислота), «оватистая» ( H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» ( HNO 3 - азотная кислота, HNO 2 - азотистая кислота).

    Таблица - Важнейшие кислоты и их соли

    Кислота

    Названия соответствующих нормальных солей

    Название

    Формула

    Азотная

    HNO 3

    Нитраты

    Азотистая

    HNO 2

    Нитриты

    Борная (ортоборная)

    H 3 BO 3

    Бораты (ортобораты)

    Бромоводородная

    Бромиды

    Иодоводородная

    Иодиды

    Кремниевая

    H 2 SiO 3

    Силикаты

    Марганцовая

    HMnO 4

    Перманганаты

    Метафосфорная

    HPO 3

    Метафосфаты

    Мышьяковая

    H 3 AsO 4

    Арсенаты

    Мышьяковистая

    H 3 AsO 3

    Арсениты

    Ортофосфорная

    H 3 PO 4

    Ортофосфаты (фосфаты)

    Дифосфорная (пирофосфорная)

    H 4 P 2 O 7

    Дифосфаты (пирофосфаты)

    Дихромовая

    H 2 Cr 2 O 7

    Дихроматы

    Серная

    H 2 SO 4

    Сульфаты

    Сернистая

    H 2 SO 3

    Сульфиты

    Угольная

    H 2 CO 3

    Карбонаты

    Фосфористая

    H 3 PO 3

    Фосфиты

    Фтороводородная (плавиковая)

    Фториды

    Хлороводородная (соляная)

    Хлориды

    Хлорная

    HClO 4

    Перхлораты

    Хлорноватая

    HClO 3

    Хлораты

    Хлорноватистая

    HClO

    Гипохлориты

    Хромовая

    H 2 CrO 4

    Хроматы

    Циановодородная (синильная)

    Цианиды

    Получение кислот

    1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:

    H 2 + Cl 2 → 2HCl,

    H 2 + S H 2 S.

    2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:

    SO 3 + H 2 O = H 2 SO 4 ,

    CO 2 + H 2 O = H 2 CO 3 ,

    P 2 O 5 + H 2 O = 2 HPO 3 .

    3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

    BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,

    CuSO 4 + H 2 S = H 2 SO 4 + CuS,

    CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.

    4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

    H 2 O 2 + SO 2 = H 2 SO 4 ,

    3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .

    Химические свойства кислот

    1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

    H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,

    2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,

    2 HCl + ZnO = ZnCl 2 + H 2 O .

    2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:

    Zn + 2HCl = ZnCl 2 + H 2 ,

    2Al + 6HCl = 2AlCl 3 + 3H 2 .

    3. С солями, если образуется малорастворимая соль или летучее вещество:

    H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,

    2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,

    2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.

    Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):

    Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,

    NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.

    4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.

    5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):

    H 2 SO 4 = H 2 O + SO 3 ,

    H 2 SiO 3 = H 2 O + SiO 2 .

    М.В. Андрюxoва, Л.Н. Бopoдина


    Кислоты – это сложные вещества, молекулы которых состоят из атомов водорода (способных замещаться атомами металла), связанных с кислотным остатком.

    Общая характеристика

    Кислоты классифицируются на бескислородные и кислородосодержащие, а также на органические и неорганические.

    Рис. 1. Классификация кислот – бескислородные и кислородосодержащие.

    Бескислородные кислоты – это растворы в воде таких бинарных соединений, как галогеноводороды или сероводород. В растворе полярная ковалентная связь между водородом и электроотрицательным элементом поляризуется под действием дипольных молекул воды, и молекулы распадаются на ионы. присутствие ионов водорода в веществе и позволяет называть водные растворы этих бинарных соединений кислотами.

    Кислоты называют от названия бинарного соединения прибавлением окончания -ная. например, HF – фтороводородная кислота. Анион кислоты называют по названию элемента прибавлением окончания -ид, например, Cl – хлорид.

    Кислородосодержащие кислоты (оксокислоты) – это кислотные гидроксиды, диссоциирующие по кислотному типу, то есть как протолиты. Общая формула их – Э(ОН)mOn, где Э – неметалл или металл с переменной валентностью в высшей степени окисления. при условии, когда n равно 0, то кислота слабая (H 2 BO 3 – борная), если n=1, то кислота либо слабая, либо средней силы (H 3 PO 4 -ортофосфорная), если n больше или равно 2, то кислота считается сильной (H 2 SO 4).

    Рис. 2. Серная кислота.

    Кислотным гидроксидам соответствуют кислотные оксиды или ангидриды кислот, например, серной кислоте соответствует серный ангидрид SO 3 .

    Химические свойства кислот

    Для кислот характерен ряд свойств, которые отличают их от солей и других химических элементов:

    • Действие на индикаторы. Как протолиты кислоты диссоциируют с образованием ионов H+, которые изменяют окраску индикаторов: фиолетовый раствор лакмуса становится красным, а оранжевый раствор метилоранжа становится розовым. Многоосновные кислоты диссоциируют ступенчато, причем каждая последующая стадия идет труднее предыдущей, так как на второй и третьей ступенях диссоциируют все более слабые электролиты:

    H 2 SO 4 =H+ +HSO 4 –

    В зависимости от того, является ли кислота концентрированной или разбавленной зависит цвет индикатора. Так, например, при опускании лакмуса в концентрированную серную кислоту, индикатор становится красным, в разбавленной же серной кислоте цвет не изменится.

    • Реакция нейтрализации , то есть взаимодействие кислот с основаниями, в результате чего происходит образование соли и воды, идет всегда, если хотя бы один из реагентов сильный (основание или кислота). Реакция не идет, если кислота слабая, основание нерастворимо. Например, не идет реакция:

    H 2 SiO 3 (слабая, нерастворимая в воде кислота)+ Cu(OH) 2 – реакция не идет

    Но в других случаях реакция нейтрализации с этими реагентами идет:

    H 2 SiO 3 +2KOH (щелочь)=K 2 SiO 3 +2H 2 O

    • Взаимодействие с основными и амфотерными оксидами:

    Fe 2 O 3 +3H 2 SO 4 =Fe 2 (SO 4) 3 +3H 2 O

    • Взаимодействие кислот с металлами , стоящими в ряду напряжений левее водорода, приводит к процессу, в результате которого образуется соль, и выделяется водород. Эта реакция идет легко, если кислота достаточно сильная.

    Азотная кислота и концентрированная серная кислоты реагируют с металлами за счет восстановления не водорода, а центрального атома:

    Mg+H 2 SO 4 +MgSO 4 +H 2

    • Взаимодействие кислот с солями происходит, если в результате образуется слабая кислота. Если соль, реагирующая с кислотой, растворима в воде, то реакция пойдет также в том случае, если образуется нерастворимая соль:

    Na 2 SiO 3 (растворимая соль слабой кислоты)+2HCl (сильная кислота)=H 2 SiO 3 (слабая нерастворимая кислота)+2NaCl (растворимая соль)

    Многие кислоты находят применение в промышленности, например, уксусная кислота необходима для консервирования мясных и рыбных продуктов

    Рис. 3. Таблица химические свойства кислот.

    Что мы узнали?

    В 8 классе по химии дается общая информация по теме «Кислоты». Кислоты – это сложные вещества, в состав которых входят атомы водорода, которые способны замещаться на атомы металлов и кислотных остатков. Изучаемые химические элементы обладают рядом химических свойств, например, они могут взаимодействовать с солями, оксидами, металлами.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.7 . Всего получено оценок: 253.

    7. Кислоты. Соли. Взаимосвязь между классами неорганических веществ

    7.1. Кислоты

    Кислоты - это электролиты, при диссоциации которых в качестве положительно заряженных ионов образуются только катионы водорода H + (точнее - ионы гидроксония H 3 O +).

    Другое определение: кислоты - это сложные вещества, состоящие из атома водорода и кислотных остатков (табл. 7.1).

    Таблица 7.1

    Формулы и названия некоторых кислот, кислотных остатков и солей

    Формула кислоты Название кислоты Кислотный остаток (анион) Название солей (средних)
    HF Фтористоводородная (плавиковая) F − Фториды
    HCl Хлористоводородная (соляная) Cl − Хлориды
    HBr Бромистоводородная Br − Бромиды
    HI Иодистоводородная I − Иодиды
    H 2 S Сероводородная S 2− Сульфиды
    H 2 SO 3 Сернистая SO 3 2 − Сульфиты
    H 2 SO 4 Серная SO 4 2 − Сульфаты
    HNO 2 Азотистая NO 2 − Нитриты
    HNO 3 Азотная NO 3 − Нитраты
    H 2 SiO 3 Кремниевая SiO 3 2 − Силикаты
    HPO 3 Метафосфорная PO 3 − Метафосфаты
    H 3 PO 4 Ортофосфорная PO 4 3 − Ортофосфаты (фосфаты)
    H 4 P 2 O 7 Пирофосфорная (двуфосфорная) P 2 O 7 4 − Пирофосфаты (дифосфаты)
    HMnO 4 Марганцевая MnO 4 − Перманганаты
    H 2 CrO 4 Хромовая CrO 4 2 − Хроматы
    H 2 Cr 2 O 7 Дихромовая Cr 2 O 7 2 − Дихроматы (бихроматы)
    H 2 SeO 4 Селеновая SeO 4 2 − Селенаты
    H 3 BO 3 Борная BO 3 3 − Ортобораты
    HClO Хлорноватистая ClO – Гипохлориты
    HClO 2 Хлористая ClO 2 − Хлориты
    HClO 3 Хлорноватая ClO 3 − Хлораты
    HClO 4 Хлорная ClO 4 − Перхлораты
    H 2 CO 3 Угольная CO 3 3 − Карбонаты
    CH 3 COOH Уксусная CH 3 COO − Ацетаты
    HCOOH Муравьиная HCOO − Формиаты

    При обычных условиях кислоты могут быть твердыми веществами (H 3 PO 4 , H 3 BO 3 , H 2 SiO 3) и жидкостями (HNO 3 , H 2 SO 4 , CH 3 COOH). Эти кислоты могут существовать как в индивидуальном (100%-ном виде), так и в виде разбавленных и концентрированных растворов. Например, как в индивидуальном виде, так и в растворах известны H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH.

    Ряд кислот известны только в растворах. Это все галогеноводородные (HCl, HBr, HI), сероводородная H 2 S, циановодородная (синильная HCN), угольная H 2 CO 3 , сернистая H 2 SO 3 кислота, которые представляют собой растворы газов в воде. Например, соляная кислота - это смесь HCl и H 2 O, угольная - смесь CO 2 и H 2 O. Понятно, что употреблять выражение «раствор соляной кислоты» неправильно.

    Большинство кислот растворимы в воде, нерастворима кремниевая кислота H 2 SiO 3 . Подавляющее число кислот имеют молекулярное строение. Примеры структурных формул кислот:

    В большинстве молекул кислородсодержащих кислот все атомы водорода связаны с кислородом. Но есть и исключения:


    Кислоты классифицируют по ряду признаков (табл. 7.2).

    Таблица 7.2

    Классификация кислот

    Признак классификации Тип кислоты Примеры
    Число ионов водорода, образующихся при полной диссоциации молекулы кислоты Одноосновные HCl, HNO 3 , CH 3 COOH
    Двухосновные H 2 SO 4 , H 2 S, H 2 CO 3
    Трехосновные H 3 PO 4 , H 3 AsO 4
    Наличие или отсутствие в молекуле атома кислорода Кислородсодержащие (кислотные гидроксиды, оксокислоты) HNO 2 , H 2 SiO 3 , H 2 SO 4
    Бескислородные HF, H 2 S, HCN
    Степень диссоциации (сила) Сильные (полностью диссоциируют, сильные электролиты) HCl, HBr, HI, H 2 SO 4 (разб), HNO 3 , HClO 3 , HClO 4 , HMnO 4 , H 2 Cr 2 O 7
    Слабые (диссоциируют частично, слабые электролиты) HF, HNO 2 , H 2 SO 3 , HCOOH, CH 3 COOH, H 2 SiO 3 , H 2 S, HCN, H 3 PO 4 , H 3 PO 3 , HClO, HClO 2 , H 2 CO 3 , H 3 BO 3 , H 2 SO 4 (конц)
    Окислительные свойства Окислители за счет ионов Н + (условно кислоты-неокислители) HCl, HBr, HI, HF, H 2 SO 4 (разб), H 3 PO 4 , CH 3 COOH
    Окислители за счет аниона (кислоты-окислители) HNO 3 , HMnO 4 , H 2 SO 4 (конц), H 2 Cr 2 O 7
    Восстановители за счет аниона HCl, HBr, HI, H 2 S (но не HF)
    Термическая устойчивость Существуют только в растворах H 2 CO 3 , H 2 SO 3 , HClO, HClO 2
    Легко разлагаются при нагревании H 2 SO 3 , HNO 3 , H 2 SiO 3
    Термически устойчивы H 2 SO 4 (конц), H 3 PO 4

    Все общие химические свойства кислот обусловлены наличием в их водных растворах избытка катионов водорода H + (H 3 O +).

    1. Вследствие избытка ионов H + водные растворы кислот изменяют окраску лакмуса фиолетового и метилоранжа на красную, (фенолфталеин окраску не изменяет, остается бесцветным). В водном растворе слабой угольной кислоты лакмус не красный, а розовый, раствор над осадком очень слабой кремниевой кислоты вообще не изменяет окраску индикаторов.

    2. Кислоты взаимодействуют с основными оксидами, основаниями и амфотерными гидроксидами, гидратом аммиака (см. гл. 6).

    Пример 7.1. Для осуществления превращения BaO → BaSO 4 можно использовать: а) SO 2 ; б) H 2 SO 4 ; в) Na 2 SO 4 ; г) SO 3 .

    Решение. Превращение можно осуществить, используя H 2 SO 4:

    BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

    BaO + SO 3 = BaSO 4

    Na 2 SO 4 с BaO не реагирует, а в реакции BaO с SO 2 образуется сульфит бария:

    BaO + SO 2 = BaSO 3

    Ответ : 3).

    3. Кислоты реагируют с аммиаком и его водными растворами с образованием солей аммония:

    HCl + NH 3 = NH 4 Cl - хлорид аммония;

    H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - сульфат аммония.

    4. Кислоты-неокислители с образованием соли и выделением водорода реагируют с металлами, расположенными в ряду активности до водорода:

    H 2 SO 4 (разб) + Fe = FeSO 4 + H 2

    2HCl + Zn = ZnCl 2 = H 2

    Взаимодействие кислот-окислителей (HNO 3 , H 2 SO 4 (конц)) с металлами очень специфично и рассматривается при изучении химии элементов и их соединений.

    5. Кислоты взаимодействуют с солями. Реакция имеет ряд особенностей:

    а) в большинстве случаев при взаимодействии более сильной кислоты с солью более слабой кислоты образуется соль слабой кислоты и слабая кислота или, как говорят, более сильная кислота вытесняет более слабую. Ряд убывания силы кислот выглядит так:

    Примеры протекающих реакций:

    2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

    H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

    2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2

    3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

    Не взаимодействуют между собой, например, KCl и H 2 SO 4 (разб), NaNO 3 и H 2 SO 4 (разб), K 2 SO 4 и HCl (HNO 3 , HBr, HI), K 3 PO 4 и H 2 CO 3 , CH 3 COOK и H 2 CO 3 ;

    б) в некоторых случаях более слабая кислота вытесняет из соли более сильную:

    CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

    3AgNO 3 (разб) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3 .

    Такие реакции возможны тогда, когда осадки полученных солей не растворяются в образующихся разбавленных сильных кислотах (H 2 SO 4 и HNO 3);

    в) в случае образования осадков, нерастворимых в сильных кислотах, возможно протекание реакции между сильной кислотой и солью, образованной другой сильной кислотой:

    BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

    Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

    AgNO 3 + HCl = AgCl↓ + HNO 3

    Пример 7.2. Укажите ряд, в котором приведены формулы веществ, которые реагируют с H 2 SO 4 (разб).

    1) Zn, Al 2 O 3 , KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF;2) Cu(OH) 2 , K 2 CO 3 , Ag; 4) Na 2 SO 3 , Mg, Zn(OH) 2 .

    Решение. С H 2 SO 4 (разб) взаимодействуют все вещества ряда 4):

    Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

    Mg + H 2 SO 4 = MgSO 4 + H 2

    Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

    В ряду 1) неосуществима реакция с KCl (p-p), в ряду 2) - с Ag, в ряду 3) - с NaNO 3 (p-p).

    Ответ : 4).

    6. Очень специфически в реакциях с солями ведет себя концентрированная серная кислота. Это нелетучая и термически устойчивая кислота, поэтому из твердых (!) солей вытесняет все сильные кислоты, так как они более летучие, чем H 2 SO 4 (конц):

    KCl (тв) + H 2 SO 4 (конц) KHSO 4 + HCl

    2KCl (тв) + H 2 SO 4 (конц) K 2 SO 4 + 2HCl

    Соли, образованные сильными кислотами (HBr, HI, HCl, HNO 3 , HClO 4), реагируют только с концентрированной серной кислотой и только находясь в твердом состоянии

    Пример 7.3. Концентрированная серная кислота, в отличие от разбавленной, реагирует:

    3) KNO 3 (тв);

    Решение. С KF, Na 2 CO 3 и Na 3 PO 4 реагируют обе кислоты, а с KNO 3 (тв) - только H 2 SO 4 (конц).

    Ответ : 3).

    Способы получения кислот весьма разнообразны.

    Бескислородные кислоты получают:

    • растворением в воде соответствующих газов:

    HCl (г) + H 2 O (ж) → HCl (p-p)

    H 2 S (г) + H 2 O (ж) → H 2 S (р-р)

    • из солей вытеснением более сильными или менее летучими кислотами:

    FeS + 2HCl = FeCl 2 + H 2 S

    KCl (тв) + H 2 SO 4 (конц) = KHSO 4 + HCl

    Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

    Кислородсодержащие кислоты получают:

    • растворением соответствующих кислотных оксидов в воде, при этом степень окисления кислотообразующего элемента в оксиде и кислоте остается одинаковой (исключение - NO 2):

    N 2 O 5 + H 2 O = 2HNO 3

    SO 3 + H 2 O = H 2 SO 4

    P 2 O 5 + 3H 2 O 2H 3 PO 4

    • окислением неметаллов кислотами-окислителями:

    S + 6HNO 3 (конц) = H 2 SO 4 + 6NO 2 + 2H 2 O

    • вытеснением сильной кислоты из соли другой сильной кислоты (если выпадает нерастворимый в образующихся кислотах осадок):

    Ba(NO 3) 2 + H 2 SO 4 (разб) = BaSO 4 ↓ + 2HNO 3

    AgNO 3 + HCl = AgCl↓ + HNO 3

    • вытеснением летучей кислоты из ее солей менее летучей кислотой.

    С этой целью чаще всего используют нелетучую термически устойчивую концентрированную серную кислоту:

    NaNO 3 (тв) + H 2 SO 4 (конц) NaHSO 4 + HNO 3

    KClO 4 (тв) + H 2 SO 4 (конц) KHSO 4 + HClO 4

    • вытеснением более слабой кислоты из ее солей более сильной кислотой:

    Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

    NaNO 2 + HCl = NaCl + HNO 2

    K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓