Фитогормонами являются. Реферат: Гормоны растений. Ингибиторы роста растений

Сегодня хотелось бы доступно и понятным языком рассказать о том, как регуляторы роста влияют на развитие растений о применении стимуляторов и ингибиторов. Для обычного садовода эта информация может показаться непонятной и сложной, но если разобраться в том как регуляторы роста влияют на развитие растений, то данный материал будет полезен.

Фитогормоны и их физиологическая роль.

Рост растений обусловлен наследственностью и управляется с помощью специфических физиологически активных веществ - фитогормонов. Они делятся на две группы:

  • Стимуляторы роста - вызывают ускорение роста и развития растений.
  • Ингибиторы роста - угнетают активность стимуляторов, тормозят развитие и рост растений.

Фитогормоны регулируют процессы:
1. Рост и развитие растений.
2. Структурные и функциональные изменения в растительном организме.
3. Направленность метаболизма.

Общие свойства фитогормонов:

1. Гормоны - высокоактивные вещества, действующие в малых концентрациях.

2. Гормоны вырабатываются в одних частях растения и передвигаются в другие его части, где и проявляют свое действие.

3. Каждый фитогормон участвует в регуляции ряда структурных и функциональных процессов, то есть обладает полифункциональными свойствами.

4. Система гормональной регуляции жизнедеятельности, роста и развития обычно многокомпонентна - в ней принимают участие не один, а несколько гормонов.

5. Регуляторное действие гормонов на растительный организм тесно связано с трофическим фактором (минеральное и углеродное питание), водным режимом, метаболизмом фенольных соединений, климатическими условиями.

Регуляторы роста растений

Стимуляторы роста образуются в небольших количествах преимущественно в меристематических тканях, а также в листьях и перемещаются по мере надобности в те части растений, где идут ростовые процессы или формообразовательные процессы. Стимуляция роста наблюдается лишь при очень низких концентрациях этих веществ в клетках растений. В больших концентрациях стимуляторы начинают действовать как ингибиторы роста. К стимуляторам роста относятся цитокинины, гиббереллины, ауксины.

Цитокинины и их роль

А. Регулируют деление клеток.

Б. Принимают участи е в процессах, связанных с начальной (эмбриональной) фазой роста.

В. Являются производными пурина (аденина), то есть имеют родство с НК.

Г. Синтезируются в корнях и транспортируются в точки роста побегов.

Д. Их физиологическое действие основано на усилении синтеза ДНК, что ведет к активации процессов деления клеток, общей стимуляции обмена веществ, синтеза белков и РНК.

Е. Они обладают аттрагирующим эффектом, вызывая приток аминокислот, фосфатов и других соединений.

Ж. Они влияют на физиологическое состояние семян, почек, на процессы, связанные с периодом покоя, индуцируют образование придаточных почек.

З. Они повышают устойчивость растений к неблагоприятным условиям окружающей среды.

И. Из природный цитокининов известен зеатин, из синтетических - кинетин.

Экзогенные (внесенные извне) цитокинины задерживают старение листьев растений. Их действие распространяется на структурное и функциональное состояние клеток листа - увеличивается размер ядер, ядрышек, число рибосом, число крист в митохондриях, ламелл стромы хлоропластов, разрастается ЭПС. Это приводит к активизации физиологических процессов в листе (синтез нуклеиновых кислот, белков, хлорофилла, интенсивности фотосинтеза), также к полной перестройке всего метаболизма листа и его структурной организации. Цитокинин в цитоплазме клеток листа взаимодействует с рецептором - веществом, воспринимающем гормональный сигнал, проникает в ядро, активизирует деятельность ядерных РНК-полимераз и тем самым синтез РНК. Это ведет к усилению биосинтеза различных белков. Происходит не только задержка старения листа, но и его омоложение. С помощью цитокининов можно существенно увеличить время активной жизнедеятельности зеленого листа, его фотосинтетическую продуктивность, а также защитить от повреждений.

Использование регуляторов роста цитокининового типа:

1. При обработке растений раствором кинетина происходит предотвращение старения листьев и активация прорастания семян.

2. Они стимулируют способность вызывать рост стеблевых (боковых) почек, изменяя апикальное доминирование - получается более густой куст.

3. Они способны вызывать дифференциацию почек у каллусов, то есть используются широко в биотехнологии растений.

Ауксины и их роль

А. Являются производными индола.

Б. В малых концентрациях стимулирую рост, в больших ингибируют.

В. Самый известный ауксин - индолилмасляная кислота (ИУК) - природное вещество, синтетические ауксины - альфа-нафтилуксусная кислота (альфа-НУК) и 2,4-дихлорфеноксиуксусная кислота (2,4-Д).

Свойства и роль ИУК в клетке

1. Синтезируется в точках роста, меристемах побегов, в растущих зародышах и семяпочках, в семядолях и листьях.

2. Содержится в семенах, в пыльце растений, в низших растениях и бактериях.

3. Она вызывает усиленное образование боковых и придаточных корней, стимулирует рост плодов, задерживает преждевременное опадение листьев и плодов.

4. Она повышает проницаемость цитоплазмы и дыхание клеток, стимулирует синтез РНК и белков, усиливает поглощение клетками воды и растворенных веществ.

5. Она способствует разрыхлению плотных участков микрофибрилл, делает их более эластичными путем разрыва водородных связей между молекулами целлюлозы.

6. Участвует в формировании и росте клеточной стенки.

7. Большие концентрации ИУК приводят к торможению роста пазушных почек растений, препятствуют опадению листьев и плодоножек.

Применение регуляторов ауксинового типа

1. Для стимуляции укоренения черенков - черенки обрабатывают растворами альф-НУК и ИМК.

2. Для получения партенокарпических (бессемянных) плодов и стимуляции плодообразования, что делается с помощью опрыскивания цветков томатов, огурцов и других культур растворами синтетических ауксинов (обычно в теплицах).

3. Для уменьшения предуборочного опадения плодов. Проводится обработка крон яблонь и груш альфа-НУК и 2,4-Д, которые задерживают образование отделительного слоя в плодоножках и снижают потери урожая. Этот прием также задерживает созревание плодов, благоприятствуя их дальнейшему хранению.

4. Для прореживания цветков и завязей у плодовых. Для борьбы с периодичностью плодоношения опрыскивают раствором альфа-НУК кроны деревьев во время цветения, вызывая частичное опадение лишних цветов.

5. Для уничтожения сорняков - 2,4-Д в определенных концентрациях используется для уничтожения широколиственных сорняков в посевах пшеницы, риса, кукурузы.

Гиббереллины и их роль

А. Наиболее известен гиббереллин А3 или гибберелловая кислота.

Б. Они стимулируют рост надземных частей растений, в два-три раза увеличивая длину стеблей по сравнению с контролем.

В. Они излечивают карликовость и розеточность растений, вызывая растяжение междоузлий стеблей.

Г. Они усиливают синтез РНК и белков.

Д. Они активируют нециклическое фосфорилирование.

Е. Они ускоряю рост плодов и прорастание семян.

Ж. Они индуцируют цветение.

З. Они задерживают образование боковых и придаточных корней.

И. Они образуются в молодых листьях, корнях, а также в незрелых семенах.

Применение регуляторов гиббереллинового типа:

1. Для повышения производства бессемянных сортов винограда.

2. Для стимуляции роста надземной части растений.

3. Для стимуляции образования солода. Обрабатывают ячмень для улучшения качества солода, используемого в производстве пива.

4. Для выведения растений из состояния покоя. Обработка клубней картофеля в южных районах нашей страны для получения второго урожая для пробуждения глазков смесью гиббереллином и тиомочевинной.

5. Смесью гиббереллина и гетероауксина обрабатывают луковицы гладиолусов и других цветочных культур для ускорения роста и повышения декоративности во время цветения.

Ингибиторы роста растений

Роль ингибиторов и их особенности:
1. Угнетают активность стимуляторов роста и их синтез.

2. Подавляют рост растений, замедляя их обмен веществ.

3. Влияют на нуклеиновый обмен, притормаживая его.

4. Нарушают процессы синтеза белков, ДНК, окислительное фосфорилирование.

5. Они находятся в семенах, покоящихся почках, глазках картофеля.

6. Большие количества ингибиторов накапливаются в растениях осенью, а весной, когда их количество снижается, растения выходят из состояния покоя, трогаясь в рост.

7. С ингибиторами роста связано одревеснение побегов древесных растений, способствующее их успешной перезимовке.

8. Ингибиторы являются производными фенолов или терпеноидов.

9. Наиболее известные ингибиторы растений - бензойная, коричная, салициловая кислоты, кумарин, абсцизовая кислота (АБК), которая вызывает опадение листьев, переход растений в состояние покоя, накапливается в зрелых плодах и старых листьях, покоящихся почках

В растениях необходимо поддержание определенного соотношения стимуляторов и ингибиторов роста. Особенно это важно для древесных растений при их переходе от вегетативного роста к репродуктивному, от вегетации к состоянию покоя.

Использование ингибиторов роста растений:

1. Используют в качестве гербицидов для борьбы с травянистыми сорняками и арборицидов для борьбы с древесными сорняками. Эти вещества, воздействуя на целые ферментные, нарушают обмен веществ и энергии, приводят растения к гибели. Главная особенность гербицидов - избирательность их действия - уничтожая сорняки, они не влияют на рост полезных растений. В качестве гербицидов применяют 2,4-Д, гидразид малеиновой кислоты (ГМК), симазин, атразин. В современной практике садоводства широко применяются гербициды общего действия - раундап и торнадо, уничтожающие все травянистые растения. Используется избирательный гербицид для газонов, уничтожающий широколистные сорняки - лонтрел.

2. Ретарданды - вещества, тормозящие удлинение стебля и предотвращающие полегание растений. Их действие основано на ингибировании роста стебля при одновременном активировании развития механической ткани в последнем, что приводит к большей сопротивляемости к, полеганию. Ретарданты отрицательно влияют на синтез гиббереллинов в растениях. Наиболее известные - хлорхолинхлорид (ХХХ), бромхолинхлорид, используемые для предотвращения полегания хлебов, для торможения вытягивания рассады овощей, декоративных культур, роста кустарников. Алар используется для получения более компактной кроны у плодовых деревьев и ускорения перехода молодых деревьев к плодоношению, а также для предотвращения предуборочного опадения плодов.

3. Дефолианты (дефолиация) - листопад, который вызывается искусственно при обработке некоторыми веществами (цианамиды, хлораты, аминотриазол). Проводят перед уборкой картофеля, чтобы предотвратить развитие фитофторы и ускорить созревание клубней.

4. Десиканты (десикация) - предуборочное высушивание листьев и стеблей бобовых. Принцип действия десикантов основан на образовании под их влиянием отделительного слоя клеток возле основания черешка листа. Наиболее известные десиканты - энтадол, пентахлорфенол.

Применение этилена

Этилен используют в хранилищах для ускорения созревания плодов перед их продажей. Производное этилена - эстрел (гидрел) применяют для стимуляции одновременного созревания плодов с последующей их машинной переработкой, а также для прореживания цветков и завязей. Опрыскивание эстрелом растений огурцов, тыквы и др. приводит к образованию большего количества женских цветков и увеличению урожая плодов.

Ф итогормоны играют значительную роль в жизни растений, регулируя важнейшие происходящие в них процессы: прорастание семян, рост, формирование тканей и органов, цветение, созревание плодов и т. п. Только в ХХ веке человек раскрыл тайну растительных гормонов и научился использовать их в своих интересах.

Все под контролем

Огромная роль в регулировании всех стадий роста и развития растительного организма – от ранних этапов эмбриогенеза до цветения и завязывания семян – принадлежит фитогормонам.

Впервые предположение о гормональном (химическом) контроле ростовых процессов в растениях было высказано еще Ч. Дарвином в книге «О способности растений к движению» в 1880 году на основании результатов опытов по изучению тропизмов у проростков злаковых. Сам термин «фитогормоны» происходит от греческого слова «hormàō», что означает «побуждаю к действию».

Обычно фитогормоны – это небольшие мобильные органические соединения, которые обладают высокой физиологической активностью даже в очень низких концентрациях (10 -6 – 10 -12 М). Они синтезируются во многих органах и легко перемещаются не только между разными клетками и органами растения, но и от одного растения к другому (например, газообразный этилен). Фитогормоны могут быть весьма разнообразны по химической природе – терпеноиды (гиббереллины, абсцизовая кислота), производные азотистых оснований нуклеотидов (цитокинины) и аминокислот (ауксины), небольшие белки и т. д.

Фитогормоны контролируют выполнение различных физиологических и морфогенетических программ, требующих скоординированных действий различных растительных клеток и тканей, нередко значительно удаленных друг от друга (процессы формирования пола или старения, транспорт веществ, регуляция биосинтезов и т. д.); управляют ответной реакцией растений на различные стрессовые воздействия. Участвуя в регуляции этих процессов, фитогормоны взаимодействуют между собой, работая как синергисты (совместно, усиливая действия другого) или антагонисты (ослабляя действия другого). При необходимости они способны образовывать неактивные комплексы и продолжительное время храниться в растительных тканях.

По сравнению с гормонами животных их действующие концентрации, как правило, выше, а специализация выражена гораздо слабее – воздействие одним и тем же гормоном на разные ткани растения может приводить к различным эффектам. Кроме того, необходимо учитывать, что оказываемое фитогормонами влияние зависит от их концентрации и условий внешней среды, в которых находится растение. Тем не менее, несмотря на полифункциональность, у каждой группы фитогормонов есть своя «область применения», где они играют ведущую роль.

К «классическим», наиболее изученным фитогормонам относят ауксины, цитокинины и гиббереллины.

Воздействие одним и тем же гормоном на разные ткани растения может приводить к различным эффектам. Кроме того, их влияние зависит от их концентрации и условий внешней среды, в которых находится растение .

Ауксины

В 30-х годах ХХ века голландский исследователь Ф. Вент выделил из верхушек колеоптилей овса экстракт, который содержал неизвестное соединение, стимулирующее и контролирующее рост и изгиб проростков при одностороннем освещении. Параллельно аналогичные работы проводились нашим соотечественником Н.Г. Холодным. Это вещество назвали ауксином (от греч. a u c o – «расти», «увеличиваться»). В дальнейшем Ф. Кегль (Германия, 1935–1939) получил его в кристаллическом виде и идентифицировал как индол-3-уксусную кислоту (ИУК).

Наиболее активный синтез этих гормонов происходит в растущих зародышах, а также в верхушечных меристемах побегов, молодых листочках, откуда потом ауксины могут направленно транспортироваться практически ко всем тканям и органам растительного организма. Наибольшие их концентрации (до 500–900 нг/г сырой массы) наблюдаются в молодых почках и листьях, камбии, проводящей системе, развивающихся плодах.

Ауксины участвуют в регуляции развития растений на всех стадиях – контролируют клеточный цикл, необходимы для дифференцировки специфических типов клеток (развитие корневых волосков, проводящей системы сосудов), играют роль в регуляции ростовых движений (тропизмов), обладают аттрагирующим действием – стимулируют активность ионных каналов, способствуя «притяжению» питательных веществ к тканям и органам и вызывая их усиленный рост.

Акусины повышают интенсивность процессов дыхания и фотосинтеза, в прорастающих семенах увеличивают активность ферментов, которые переводят запасные вещества в водорастворимые и легко транспортируемые в зародыш соединения. Благодаря полярному направленному транспорту ауксинов в растительном организме ИУК регулирует дифференцировку тканей и полярность развития органов в процессе роста, обеспечивает взаимодействие между различными частями растения – например, обуславливает тормозящее влияние верхушечной (апикальной) почки побега на рост пазушных почек.

На сегодняшний день доказано, что природные ауксины являются производными аминокислоты триптофана. ИУК – самый распространенный природный ауксин, который встречается у большинства растений (до 85–90 % от всех ауксинов в тканях растений различных видов). Известны также, к примеру, индолбутировая и хлориндолилуксусная кислоты, которые близки к ИУК по химическому строению и происхождению. Кроме того, получены синтетические соединения с ауксиновой активностью – производные нафтилалкилкарбоновых кислот (1-нафтилуксусная кислота – 1-НУК), некоторые хлорзамещенные феноксипроизводные (2,4-дихлорфеноксиуксусная кислота – 2,4-Д), производные индола – индолил-3-пропионовая (ИПК) и индолил-3-масляная (ИМК) кислоты. Их особенностью является более высокая устойчивость к разрушению в тканях растений.

Ауксины участвуют в регуляции развития растений на всех стадиях.

Цитокинины

В 1913–1923 годах австрийский ботаник Г. Габерландт и его сотрудники при изучении процессов заживления раневых поверхностей клубней картофеля и топинамбура обнаружили в проводящих тканях вещества, вызывающие деление клеток. Однако из-за очень низкого содержания в биологических объектах их структуру долго не удавалось определить. Впервые в чистом виде вещество, вызывающее в культуре изолированных растительных тканей деление клеток, было выделено из молок сельди в 1955 году в лаборатории Ф. Скуга. Это оказался 6-фурфуриламинопурин (кинетин), который практически не синтезируется у растений. Однако в дальнейшем для растительных организмов были также выявлены соединения со сходной физиологической активностью – например, зеатин, изопентениладенин. Благодаря способности индуцировать и поддерживать процессы деления клеток (цитокинез) они получили название цитокинины.

Цитокинины обнаружены в различных растительных тканях и органах, но особенно высоки их концентрации (до 500–1000 нг/г сырой массы) там, где идет активное деление клеток, – в меристемах боковых корней, в камбии, в зародышах на ранних стадиях развития, опухолевых тканях. При этом содержание цитокининов в растительном организме может изменяться в несколько раз за короткое время как в процессе роста и развития, так и в результате изменений условий внешней среды.

Функции цитокининов многообразны, но основное действие – контроль пролиферации клеток, регуляция роста и развития в зависимости от изменения доступности питательных компонентов, поддержание верхушечной меристемы побегов, ингибирование развития корневой системы, предотвращение старения листьев. При взаимодействии с другими гормонами цитокинины действуют как антагонисты ауксинов и гиббереллинов.

Природные цитокинины – производные пуринового основания аденина. Среди синтетических аналогов встречаются как производные аденина (кинетин), так и соединения иной химической природы, например тидиазурон.

Цитокинины обнаружены в различных растительных тканях, но особенно высоки их концентрации там, где идет активное деление клеток.

Гиббереллины

Открытие гиббереллинов произошло в Японии при изучении риса, пораженного грибом Gibberella fujikuroi . Это заболевание называли «болезнь глупых проростков», так как из зараженных побегов развивались чрезмерно высокие растения, которые быстро полегали и не давали семян. В 1926 году Э. Куросава с сотрудниками выделили из гриба вещество, вызывающее неестественно быстрый рост риса, и назвали его гиббереллином. Позднее, в 1950-х годах, Европейскими учеными было доказано, что вещества со сходной структурой содержатся также и в высших растениях, где действуют как фитогормоны.

Основное место синтеза гиббереллинов в растении – молодые, интенсивно растущие листья, части цветков, формирующиеся семена и плоды, верхушка корня, откуда они пассивно переносятся в остальные части растительного организма (побеги, корни, бутоны и т. п.).

Наиболее характерный эффект действия гиббереллинов – контроль вегетативного развития, в том числе и удлинение стеблей за счет активации деления клеток и усиления их растяжения. Они также участвуют в регуляции прорастания семян и стимуляции цветения. Выполняя все эти программы, гиббереллины обычно работают в одном направлении с ауксинами и при этом являются антагонистами цитокининов и абсцизовой кислоты.

Гиберреллины по химической природе в основном представляют собой тетрациклические дитерпеноиды с кислотной группой. На данный момент у растений известно более сотни гиббереллинов, которые обозначаются и нумеруются в историческом порядке их обнаружения (ГК 1 , ГК 2 … и т. д.). Лишь небольшой их процент обладает биологической активностью фитогормонов. Наиболее известна гибберелловая кислота – гиббереллин ГК 3 .

Из-за высокой стоимости природных регуляторов роста их заменяют синтетическими аналогами.

Приручай гормоны

Применение фитогормонов в сель­ском хозяйстве, садоводстве и лесоводстве дает возможность управлять ростом и развитием растений, позволяя повышать их устойчивость к биотическим и абиотическим стрессовым факторам, увеличивать урожайность, повышать качество посадочного материала и т. п.

Чаще всего из-за высокой стоимости природных регуляторов роста их заменяют синтетическими аналогами – структурными «двойниками» эндогенных фитогормонов. Для обработки можно использовать пасты и растворы, при этом для достижения максимальной эффективности в каждом конкретном случае необходимо тщательно подбирать соотношения и концентрации препаратов, учитывать вид растений, фазы их роста, развития и физиологического состояния, уровень и качество минерального питания, а также климатические условия.

Так, грамотное применение препаратов на основе фитогормонов при выращивании древесных растений позволяет регулировать периоды плодоношения и старения, сократить ручной труд при уходе за саженцами и в борьбе с сорняками; облегчить условия пересадки и акклиматизации растений в питомниках и на объектах озеленения. Показано, что при правильно подобранном сочетании фитогормонов у деревьев интенсифицируются процессы синтеза белковых веществ и сахаров, улучшается восстанавливаемость тканей, возрастает активность фотосинтеза, усиливается развитие корневой системы, особенно придаточных корней.

К примеру, обработка гиббереллинами на определенных этапах развития может ускорять рост древесных саженцев, способствовать формированию кроны и росту побегов, усиливать цветение. Применение препаратов на основе ауксинов также приводит к активизации ростовых процессов и повышению содержания хлорофилла у сеянцев липы, ели, березы. Предпосевная обработка регуляторами роста семян хвойных (сосны, лиственницы, ели) дает возможность улучшать их всхожесть и сокращать срок выращивания сеянцев в питомниках.

Регуляторы роста растений также широко применяются в декоративном садоводстве, при выращивании плодовых, зерновых, овощных культур. К примеру, ауксины активно используют для быстрого укоренения черенков при вегетативном размножении различных плодовых и декоративных деревь­ев. Обработка плодовых α-нафтилуксусной кислотой (α-НУК) при созревании урожая предупреждает преждевременное опадание плодов. В районах, где плодовые деревья страдают от весенних заморозков, своевременное применение растворов индолилуксусной кислоты помогает задержать рост почек и начало цветения до наступления благоприятных температурных условий.

Опрыскивание ауксинами и гиббереллинами цветков некоторых растений (к примеру, томатов, перца, огурцов, табака, ежевики) приводит к формированию партенокарпических плодов, которые не содержат семян и быстрее растут. Кроме того, препараты на основе синтетических аналогов природного ауксина в высоких концентра­циях (>0,1 %) эффективны в борьбе с сорняками и работают как гербициды (например, 2,4-Д), причем разные виды растений обладают различной чувствительностью к их действию. В частности, злаковые малочувствительны к опрыскиванию растворами такой концентрации, которая убивает двудольные растения.

Обработка гиббереллинами индуцирует зацветание многих декоративных растений, а также позволяет увеличивать урожаи, к примеру, бессемянных сортов винограда. При опрыскивании гибберелловой кислотой у волокнистых культур (конопли, льна) резко удлиняются стебли, что приводит к улучшению качества и увеличению количества получаемого волокна. С помощью гиббереллинов можно прервать покой клубней картофеля, заменить стратификацию семян.

Фитогормоны также широко используются в биотехнологии при выращивании клеточных или тканевых культур растений in vitro , при получении трансгенных растений, а также для микроклонального размножения и оздоровления генетически ценных сортов сельскохозяйственных и древесных растений.

Меристемы – ткани растений, состоящие из интенсивно делящихся и сохраняющих физиологическую активность на протяжении всей жизни клеток.

Пролиферация – разрастание ткани организма путем размножения клеток.

Регуляторы роста, или фитогормоны.

Рост и развитие растений невозможны без специфических веществ – регуляторов роста, или фитогормонов. Эти вещества отвечают за жизнь растений с момента прорастания семени до полного отмирания растения.

Фитогормоны вырабатываются в растениях в незначительных количествах (в концентрациях начиная с 10 -5 моль/л), однако выполняют сигнальные функции – управляют процессами роста и развития всего растения. Они синтезируются в одном из органов – корнях, молодых листьях, верхушечной почке побега — и перемещаются в определённые места, где запускают процессы жизнедеятельности. Это своеобразные посланники – мессенджеры (от англ. «message «-«послание», «сообщение»), передающие команды генов: расти, цвести, образовывать плоды, сбрасывать листья, стареть, отмирать…

Основных групп классических гормонов пять: ауксины, гиббереллины, цитокинины, этилен, абсцизины. Часто к этому списку добавляют и другие вещества: брассиностероиды, жасминовую кислоту, салициловую кислоту, некоторые фенольные соединения и др. Каждый класс включает в себя как стимуляторы, так и ингибиторы различных функций, и они часто работают в паре, определяя конечный эффект на рост растения.

Можно влиять на соотношение гормонов (гормональный баланс), чтобы получить определённый результат. Для этого в декоративном садоводстве и сельском хозяйстве применяют синтетические гормоны – аналоги природных, обрабатывая ими растения. Синтетические гормоны являются пестицидами и производятся как промышленные препараты на агрохимических предприятиях.

Ауксины образуются в верхушках корней и побегов. Они стимулируют корнеобразование, а также активный рост главного побега, перемещаясь по стеблю.

Гиббереллин называют гормоном роста – он отвечает за рост стебля и образуется в основном в листьях растений и иногда в корнях.

Цитокинин регулирует заложение и рост почек, что приводит к росту боковых побегов. Он образуется преимущественно в корнях растений.

Этилен замедляет рост и отвечает за созревание плодов, а также вызывает опадение листьев, подготавливая растения к зиме. Его называют гормоном старения. Он образуется в тканях меристемы – зонах роста.

Абсцизовая кислота — помогает преодолеть водный дефицит (водный стресс) при засухе и заморозках – регулирует водный баланс, включает защитные механизмы и сдерживает избыточный рост растений. В периоды покоя или по мере старения растений её становится всё больше в почках, клубнях и других покоящихся органах.

Эпибрассинолид — регулирует работу всех фитогормонов и образуется во всех органах растения. Его называют гормон гормонов. Это многофункциональный фитогормон –является регулятором роста, помогает преодолевать стрессы и повышает иммунитет растений.

Все фитогормоны непосредственно взаимодействуют друг с другом.

Регуляторы роста, применяемые в растениеводстве, по-разному влияют на гормональный статус растения.

Один из лучших препаратов, с которым очень удобно работать — Циркон, обладает ауксиновой, цитокининовой и гиббереллиновой активностью, что приводит к активации ростовых процессов, особенно корневой системы, увеличению листовой поверхности и соответственно к усилению процесса фотосинтеза и поглощения элементов минерального питания. Вместе с тем он удлиняет процесс плодоношения ягодных, овощных культур (земляники, малины, огурца, томата и др.), а у декоративных культур увеличивается срок цветения, размеры цветков и яркость окраски.

Зная характер действия фитогормона, можно ожидать того или иного результата действия и правильно выбрать необходимый препарат.

К примеру, препарат гетероауксин обладает только ауксиновой активностью и стимулирует корнеобразование и рост надземной части.

А вот Эпин-Экстра и Циркон – многоцелевые препараты, поскольку повышают активность различных гормонов, отвечающих за рост корней, главного стебля и боковых побегов, цветение, повышают устойчивость к неблагоприятным факторам среды. Поэтому использование таких многоплановых препаратов более выгодно.

Следует иметь в виду, что регуляторы роста используются в очень малых количествах, и превышение нормы их расхода может привести к обратному эффекту – например, вместо стимуляции к торможению роста. Чтобы не навредить растению, лучше дать меньше, чем больше.

Препараты группы ауксинов.

Гетероауксин – действующее вещество ИУК (индолил 3-уксусная кислота), применяется :

— для ускорения корнеобразования и для укоренения черенков декоративных и плодовых культур. Зеленые черенки замачивают в 0,002 % растворе (0,2 г/10 л) на 10-16 часов.

— перед посадкой корни саженцев плодовых растений погружают в раствор 0,1-0,2 г/10л на 1 час.

— для стимуляции роста корневой системы весной (в фазу распускания почек) и осенью (в период опадения листьев) проводят полив приствольных кругов плодовых и ягодных культур 0,002 % раствором из расчета 5 л/куст или 5 — 10 л/дерево.

— для улучшения прорастания луковиц и клубней цветочных культур проводят замачивание перед посадкой в 0,01% растворе (0,1г/л) в течение 16-24 часов.

Корневин – действующее вещество ИМК (4-(индол-3-ил) масляная кислота).

ИМК является синтетическим аналогом гетероауксина, но дольше сохраняется в растениях и является более сильным стимулятором роста.

Корневин применяется :

— для улучшения корнеобразования и укоренения черенков плодовых и декоративных культур путем опудривания среза черенков (10-20 г/100 черенков).

— для повышения приживаемости саженцев до посадки замачивают корни в 0,1 % растворе (1г/л) в течение 6 часов, расход рабочего раствора 100 л на 100 растений, а также поливают растения под корень сразу после посадки и через 10 дней.

Важно отметить, что гетероауксин и корневин действуют при температуре выше +15 0 С, поэтому вода для их растворов должна иметь в идеале температуру +20 0 С.

Препараты группы гиббереллинов.

Завязь, Бутон, Гибберсиб — действующее вещество гибберреллиновых кислот натриевые соли.

Известно, что гиббереллин, стимулируя побегообразование, угнетает рост корней, а ауксин, стимулируя корнеобразование, подавляет рост побега. Таким образом, взаимодействуя между собой, они обеспечивают гармоничный рост и развитие как корневой системы, так и его надземной части.

Завязь применяется :

— для сохранения завязей на плодово-ягодных культурах,

— ускорения созревания, повышения урожайности и качества продукции.

Опрыскивание смородины и малины проводят в фазе бутонизации и зеленых завязей, а груш, вишни и сливы — в фазе массового цветения и повторно после опадания лепестков, земляники садовой — в фазе начала появления цветоносов и повторно через 7 дней. Концентрация раствора 0,2%.

Препарат Эпин – Экстра, действующее вещество эпибрассинолид .

Эпин-Экстра обладает широкой биологической активностью, оказывает антистрессовое воздействие на растения, снижает воздействие неблагоприятных природных факторов (заморозки, засуха и др.). Наряду с этим оказывает росторегулирующее и ростостимулирующее действие, так как активизирует ауксиновую и цитокининовую активность.

Обработка Эпином повышает устойчивость ряда культур к грибным заболеваниям, снижает поступление в растения солей тяжелых металлов, радионуклидов, нитратов, повышает морозостойкость растений к весенним и летним заморозкам, улучшает вызреваемость древесины и таким образом повышает ее устойчивость к перепадам температуры в осенне-зимний период.

Эпин-Экстра применяют :

— для повышения всхожести при замачивании семян любых растений и луковиц цветов,

— перед высадкой рассады цветов в открытый грунт или на следующий день после её высадки,

— перед наступлением заморозков, в период их или сразу после них для обработки плодово-ягодных, декоративных и других культур (норма расхода препарата 1мл на 5 л воды). Это обеспечивает сохранность растений и получение хорошего урожая.

— для лучшего завязывания плодов и повышения урожайности плодовых деревьев — в период бутонизации и повторно в фазе цветения или опадения лепестков (расход 2мл/5л). Это способствует сохранению завязей, снижению поражаемости болезнями, повышению устойчивости к перепаду температур и влажности.

— для пробуждения весной хвойных деревьев и кустарников, посаженных предыдущей осенью или зимой (норма расхода 1мл/10л).

— для преодоления последствий зимних солнечных ожогов хвойных растений.

Препарат Циркон , действующее вещество гидроксикоричные кислоты.

Гидроксикоричные кислоты, входящие в состав препарата, это природные соединения, постоянно потребляемые человеком с пищей в концентрациях, зачастую превышающих их концентрацию в препарате. Они быстро усваиваются растениями и разлагаются микроорганизмами почвы и воды.

Циркон активизирует синтез хлорофилла, процессы роста и корнеобразования. Он проявляет опосредованное антигрибное и антибактериальное действие и непосредственную антивирусную активность .

Препарат рекомендован для усиления ростовых процессов, повышения всхожести семян, ускорения цветения, увеличения урожайности, снижения пораженности болезнями. Циркон оказывает более сильное стимулирующее действие на корнеобразование и укоренение, чем ИУК, повышает засухоустойчивость культур.

Циркон применяется :

— для повышения всхожести семян, а также клубнелуковиц при замачивании (в течение 6-8 ч),

— для повышения устойчивости растений к возбудителям грибных болезней,

— в сильную засуху и жару для снятия стресса и улучшения самочувствия растений,

— при посадке растений для улучшения корнеобразования и повышения приживаемости (Я обычно замачиваю голые корни на полчаса до посадки или напитываю ком контейнерного растения в растворе циркона; затем поливаю растение после посадки через день).

— для преодоления последствий зимних солнечных ожогов хвойных растений,

— при работе с пестицидами для снятия их негативного воздействия на растения (всегда добавляю в раствор с пестицидами 1 мл Циркона на 10л раствора).

— для повышения завязываемости плодов и соответственно их урожайности в период бутонизации, особенно косточковых культур. Например, опрыскивание вишни в период бутонизации раствором циркона (0,5 и 1,0 мл на 1 л воды) повышало завязываемость плодов на 10 –37% в зависимости от сорта, а сбор ягод в 2-3 раза.

Кремнийсодержащие препараты.

Силиплант. В продаже недавно появилось кремнийсодержащее удобрение Силиплант, которое помимо кремния (7,5-7,8%) содержит ряд микроэлементов (Fe, Cu, Zn, Mg, Mn, Mo, B).

Действие кремния на растения многостороннее. Он содержится во всех растениях и принимает активное участие во многих процессах обмена веществ. Кремний входит в состав клеточной стенки и от его содержания зависит ее прочность . Давно замечено, что растения с высоким содержанием кремния меньше поражаются болезнями и вредителями, они более устойчивы и к неблагоприятным погодным условиям.

Многие соединения кремния обладают фунгицидной активностью и повышают устойчивость растений к болезням .

Применение кремнийсодержащих соединений положительно влияет на урожайность культур и качество продукции (например, повышает сахаристость ягод винограда), увеличивает зимостойкость культур.

Силиплант хорош при обработке растений пестицидами , так как он повышает их эффективность и увеличивает срок защитного действия. Силиплант образует пористую пленку, которая закрепляет пестициды на поверхности растений и снижает их потери. Кремний позволяет снизить норму расхода пестицидов на 20-40%, так как усиливает поглощение и передвижение пестицидов внутри растений.

Кремний уменьшает негативное влияние пестицидов на растения, а также высокой и низкой температуры.

Обработка многолетних растений Силиплантом способствует лучшей их перезимовке .

При опрыскивании Силиплантом газонов повышается их устойчивость к вытаптыванию .

Рабочая концентрация Силипланта 0,1-0,3%.

Гормоны растений называются фитогормонами . Фитогормоны – это химические соединения, с помощью которых осуществляется взаимодействие клеток, тканей и органов и которые в малых количествах необходимы для регуляции всех процессов жизнедеятельности растений. Гормоны растений – это низкомолекулярные соединения, которые активны в очень низких концентрациях (10 -13 -10 -5 моль/л). Они, как правило, образуются в одной части растения, а транспортируются в другую, где и оказывают сильнейшее воздействие на процессы роста и развития растительного организма.

Несмотря на многообразие функций определенных гормонов, их можно объединить в две группы: гормоны-стимуляторы и гормоны-ингибиторы . К важнейшим стимуляторам относят ауксины, гиббереллины и цитокинины, а к ингибиторам – абсцизовую кислоту и этилен.

Ауксинами называются вещества индольной природы: индолилуксусную кислоту и ее производные. Предшественником ауксинов в растении служит одна из незаменимых аминокислот – триптофан. Синтез ауксина из триптофана находится под контролем других гормонов растений – гиббереллинов (они активируют синтез) и этилена (подавляет синтез). Ауксины синтезируются преимущественно в верхушеынх системах (точках роста) стебля и корны. Больше всего их накапливают растущие почки и листья, пыльца и формирующиеся семена. Сильное влияние оказывает ауксин на цветение, рост и созревание плодов растений. Ауксин, содержащийся в пыльце, необходим для роста пыльцевой трубки и, следовательно, для опыления растений. Транспорт ауксинов в растении происходит строго полярно: вниз по стеблю от верхушки побега к кончику корня – к зоне его растяжения. Сюда же вливаются и потоки ауксина из листьев. Ауксин – один из самых древних фитогормонов. Известно, что даже у примитивных жгутиковых организмов имеется регуляторное химическое соединение – серотонин, очень близкое по строению к ауксину, играющее роль внутриклеточного гормона. У высокоорганизованных животных серотонин является одним из нейромедиаторов. Ауксины используют в растениеводстве для стимуляции корнеобразования у черенков древесно-кустарниковых и травянистых растений (смородины, крыжовника, вишни, винограда, жасмина, розы и др.), а также для улучшения срастания привоя и подвоя при проведении прививок.

Гиббереллины . Название этих фитогормонов происходит от латинского названия гриба гиббереллы из класса Сумчатые (Gibberella fujikuroi). Этот гриб продуцирует гиберелловую кислоту, которая была открыта (в 1926 г.) в Японии. Гиббереллины синтезируются особо интенсивно в растущих (верхушечных 9-апикальных) стеблевых почках растений, в хлоропластах листьев, в формирующихся семенах, в зародыше прорастающих семян. Физиологические функции гиббереллинов разнообразны. Они оказывают сильное влияние на интенсивность митоза и растяжение клеток. Под действием гиббереллинов удлиняются стебель и листья, а цветки и соцветия становятся крупнее. У винограда образуются более крупные гроздья.

Мощное влияние оказывает гиббереллин на цветение растений. Оказалось, что для зацветания растений необходима определенная концентрация гиббереллина в тканях. Такая концентрация возникает либо при длинном световом дне, либо при низких температурах (при яровизации). Поэтому обработка гиббереллином ускоряет цветение длиннодневных растений: их можно «заставить» цвети даже при коротком световом дне.

Сильнейшее влияние гиббереллин оказывает на выход растений из состояния физиологического покоя. Семена и клубни многих растений после уборки находятся в состоянии покоя и не прорастают даже в благоприятных условиях увлажнения, обеспеченности кислородом и теплом. Однако обработка гиббереллином вызывает их прорастание.

Гиббереллин также пробуждает спящие почки зимующих травянистых и древесно-кустарниковых растений. Обработка гиббереллином позволяет, например, получить в середине зимы цветущие побеги жасмина, сирени или ландыша. Такой метод в растениеводстве получил название выгонки растений.

Высокая физиологическая активность гиббереллинов проявляется в период формирования сочных плодов. Как оказалось, развивающиеся после оплодотворения семена продуцируют гиббереллины, необходимые для роста и формирования плодов. Недостаток в этот критический момент активных гиббереллинов вызывает приостановку роста плодов. Дополнительная обработка гиббереллином, напротив, способствует формированию крупных бессемянных (партенокарпических) плодов у томата, винограда, перца, цитрусовых, плодовых семечковых и косточковых кульур.

Цитокинины. Цитокинины – фитогормоны, производные пурина, оказывающие сильное стимулирующие действие на рост и развитие растений. Основное место синтеза цитокининов – верхушечные меристемы корней. Они также образуются в молодых листьях и почках, в развивающихся плодах и семенах.

Примечательно, что цитокинины синтезируются не только растениями, но и некоторыми микроорганизмами, связанными с растениями. Так, клубеньковые бактерии, поселяющиеся на корнях бобовых растений. Обогащают их ткани цитокининами и ауксинами, что приводит к притоку питательных веществ и образованию клубеньков.

Цитокинины в растениях стимулируют деление клеток, ускоряют рост клеток двудольных (но не однодольных) растений в длину, способствуют их дифференцировке. В основе физиологической активности цитокининов – усиление синтеза ДНК, белка, роста и развития хлоропластов и других органелл клеток. Цитокинины стимулируют рост и развитие побегов, но угнетают рост корней. В этом их отличие от действия ауксинов.

Подобно гиббереллинам, цитокинины обладают высокой «пробуждающей» способностью: они выводят из состояния глубокого покоя семена и клубни, спящие почки деревьев и кустарников, повышают всхожесть семян гороха, кукурузы, ячменя и многих других растений.

Цитокинины задерживают старение листьев, усиливают поступление в ткани питательных веществ, благодаря чему происходит восстановление структуры хлоропластов, усиливается синтез в них хлорофилла, РНК и белка. Повышается интенсивность фотосинтеза.

Абсцизовая кислота . Если ауксины, гиббереллины и цитокинины – это стимуляторы роста и развития растений, то абсцизовая кислота – важнейший растительный ингибитор широкого спектра действия. Абсцизовая кислота (АБК) синтезируется практически во всех органах растений, особенно в стареющих. АБК является антагонистом гормонов-стимуляторов. Так, переход в покой семян, клубней, луковиц и почек связан с увеличением содержания в них АБК.

Как оказалось, растение реагирует на укорочение светового дня и приближение зимы ускорением синтеза АБК. В этот период повышается содержание этого гормона в зимующих органах многолетних бобовых и злаковых трав, озимых зерновых. Одновременно подавляется активность ауксинов, гиббереллинов и цитокининов. Это предотвращает чрезмерную физиологическую активность растений, готовящихся к зимовке.

Старение растений и созревание плодов томата, земляники, груши, винограда и других культур связано со значительной концентрацией АБК: фитогормон ускоряет распад белков, нуклеиновых кислот, фотопигментов.

Как оказалось, абсцизовая кислота участвует в таком важном процессе, как регуляция работы устьиц. При обезвоживании листьев содержание в них АБК быстро повышается. Это заставляет устьица закрываться, что приводит к снижению транспирации.

Динамическое равновесие в растительных клетках между тормозящим действием АБК, с одной стороны, и стимулирующим эффектом ауксинов, цитокининов и гиббереллинов, с другой стороны, служит необходимым условием нормального роста и развития растений. Создается своеобразная система взаимного сдерживания гормонов-антагонистов, в результате чего метаболизм растительного организма приобретает необходимую устойчивость.

Этилен. Гормональным фактором растительного организма служит хорошо известный газ этилен. Он образуется из аминокислоты метионина практически в любом органе растений, но все же наиболее высока скорость его биосинтеза в стареющих листьях и созревающих плодах. Физиологические функции этилена в растении многообразны. Этилен способствует старению тканей и тем самым ускоряет опадение листьев и плодов. В случае локальных повреждений растение синтезирует так называемый «стрессовый этилен», который способствует отторжению поврежденных тканей. Этилен увеличивает покой семян, клубней и луковиц, а также ускоряет созревание плодов. Поэтому этилен используют для ускорения дозревания плодов, для чего их помещают в специально герметично закрытые камеры, заполненные этим газом.

Этилен оказывает влияние на генеративные органы растений, в частности способствует смещению пола двудомных растений в женскую сторону. Это приводит, например, к изменению соотношения женских и мужских цветков огурца и способствует повышению его урожайности. Этилен, как газообразное соединение, обладает высокой подвижностью в растительных тканях. Поэтому, быстро распространяясь по растению, он оказывает регулирующее воздействие на работу других фитогормонов, усиливая или, наоборот, подавляя их физиологическую активность.

Таким образом, гормональная система растений является многокомпонентной. Соотношение гормонов-активаторов и гормонов-ингибиторов закономерно изменяется в процессе индивидуального развития растений, а также в ответ на изменение экологических факторов. В связи с этим исключительно велико значение фитогормонов для повышения устойчивости растений к неблагоприятным факторам. Общая закономерность такова: в случае стрессового воздействия преобладает роль гормонов-ингибиторов (абсцизовой кислоты и этилена), а при выходе растения из стрессового состояния и переходе к нормальной жизнедеятельности – гормонов-активаторов (ауксинов, гиббереллинов и цитокининов).

Фитогормоны - соединения, с помощью которых осущест­вляется взаимодействие клеток, тканей и органов и которые в малых количествах необходимы для запуска и регуляции физио­логических и морфогенетических программ растений (В. В. По­левой, 1989). Выделяют пять групп фитогормонов (рис.):

    аук­сины,

    гиббереллины,

    цитокинины,

    абсцизины,

Общие черты Фитогормонов:

    это сравни­тельно низкомолекулярные органические соединения,

    действие проявляют в очень низких концентрациях (10 -10 моль/л);

    как правило, образуются в одной части растения, а действуют в другой, куда транспортируются;

    регулируют крупные морфогенетические и физиологические про­граммы и подпрограммы;

    регулируют синтез эндоген­ных вещества негормональной природы: фузикокцины, полиами­ны, бугатастины, фенолы и терпеноиды, производные мочевины, витамины и др.

Каждая клетка способна синтезировать все группы гормонов. Однако в системе целого растения на биосинтетические функ­ции клеток накладывается ряд запретов.

Все регуляторные соеди­нения

    синтезируются из АК или ОК ;

    их биосинтез происходит из продуктов фотосинтеза и дыхания;

    как стимуляторов, так и ингибиторов имеют общих предшественников (хорезмовая, мевалоновая кислоты).

Фитогормоны полифункциональны , регулируют многие фи­зиологические процессы, физиологическое действие их на расте­ние зависит от следующих факторов:

    специфики объекта - видовых, органных, тканевых, возраст­ных и других особенностей растительного объекта, определяю­щих его восприимчивость к фитогормону;

    концентрации фитогормона - активирует или ингибирует дан­ный физиологический процесс или функцию;

    соотношения данного фитогормона с другими;

    обеспеченности растительного объекта необходимыми факто­рами минерального и углеродного питания;

    напряженности факторов внешней среды (свет, температура, вода и др.), создающих необходимые условия для действия фитогормона.

Устойчивость растений к воздействию неблагоприятных фак­торов среды связана с защитными реакциями, формирующимися с участием гормонов. В период действия стрессора преобладает роль гормонов-ингибиторов, а при выходе растений из состояния стресса - гормонов-активаторов.

Передвижение ауксинов идет в основном базипетально, цитокининов - акропетально, другие гормоны пере­двигаются в обоих направлениях.

    1. Ауксины

Ауксины - соединения преимущественно индольной природы : ИУК и ее производные (индолил-3-ацетальдегид, индолил-3-ацетонитрил, индолил-3-молочная кислота, метиловый и этиловый эфиры ИУК, триптамин и др.).

Ауксин синтезируется по схеме(рис.):

ФЭП -> Эр-4-Ф -> шикимовая кислота -> триптофан -> ИУК.

Ауксины обра­зуются преимущественно в верхушечных меристемах стебля, наиболее интенсивно в верхушке главного побега, и корня, а также в молодых листьях (рис.). Содержание ИУК колеблет­ся от 1 до 100 мкг/кг сырой массы. Больше всего ИУК в расту­щих почках и листьях, в пыльце, формирующихся семенах . Некоторые микоризные грибы выделяют ауксин, который тормозит рост корней растений. Образование клубеньков на корнях бобовых стимулирует ауксин, синтезируе­мый клубеньковыми бактериями.

Транспорт ауксина в растении проходит строго полярно, в основном вниз по стеблю от верхушки побега к кончику корня (базипетально), к рецепторным клеткам зоны растяжения корня. Сюда вливаются и потоки ауксина из листьев. Полярный транс­порт ауксина, возможно, является одной из причин полярного характера роста и морфогенеза растений (В. В. Полевой, 1988). Транспорт ауксина - активный процесс; он проходит по клеткам флоэмы , а также по симпласту и апопласту других тканей расте­ния. Экзогенный ауксин, нанесенный на корни растений, способен передвигаться по ксилеме вверх в акропетальном направлении.

Ауксины - фитогормоны преимущественно индольной природы - индолил уксусная кислота (ИУК) и ее производные.

Продуцируются растущими верхушками (апексами) стеблей, корней и перемещаются в зону растяжения клеток, усиливая рост стеблей, листьев и корней. ИУК больше всего в развивающихся почках и листьях, активном камбии, в формирующихся семенах, в пыльце.

Физиология действия: активирует деление и растяжение клеток, необходим для формирования проводящих пучков и корней. Способствует разрастанию околоплодника, обладает отрагирующим действием (притягивает питательные вещества), задерживает процессы старения органов и тканей, обуславливают явление апекального доминирования (тормозит рост пазушных почек). Участвует в тропизмах и настиях.

Вызывает: партенокарпию, задерживает опадение завязей и листьев, стимулирует образование корней у черенков. Чувствительность корней выше, чем стеблей.

ИУК образуется из триптофана. Содержание от 1 до 1000 мкг на кг сырой массы. Находится в свободном и связанном состоянии.

Механические действия: индуцирование увеличение степени растяжения клеточных стенок, усиление дыхания, синтеза белка и нуклеиновых кислот.

К ауксинам относят некоторые фенольные соединения, стимулирующие рост растений: фелумовая кислота, ионфениловый спирт, ванилин, кофейная кислота (более слабым действием).

Синтетические регуляторы роста ауксинного типа.

Влияют подобно ИУК, но действуют в меньших количествах и более продолжительно. Относятся к индольным, фенольным соединениям и к нафтилалкилкарболовым кислотам:

индолилмасляная кислота (ИМК)

2,4-дихлорфеноксиуксусная кислота (2,4-Д)

1-нафтилуксусная кислота(1-НУК)

Применение:

    Стимуляция укоренения черенков:

черенки плодовых и лесных растений. Обработка оснований черенков растворами ИМК или 1-НУК (у вяза 50 мг/л)

    Получение партенокарпических плодов и стимуляция плодообразования.

Опрыскивание цветков томата, огурцов и др. растворами синтетических ауксинов - образование плода без оплодотворения. Широко используется в теплицах.

    Уменьшение предуборочного старения плодов. Обработка кроны яблонь, груш и др. 1-НУК или 2,4 -Д задерживает образование отделительного слоя в плодоножках (благоприятен при хранении).

    Прореживание цветков и завязей у плодовых. Раствор 1-НУК в повышенных концентрациях (15-50 мг/л), обработка кроны деревьев во второй половине цветения, удаляет лишние цветки (образуется этилен).

    Уничтожение сорняков 2,4- Д и другие хлорфенокси кисл. широко используются для уничтожения (0,6-1,5 кг/га) пшеницы, риса, кукурузы и др. культур

Действие:

    Стимули­рует все три фазы роста клеток . С этим действием связаны образование корней, камбиальная активность и образование кал­луса, разрастание завязи партенокарпических плодов.

    Ре­гулирует формирование проводящих пучков ,

    Обусловливает явле­ния фото- и геотропизма у растений, связанные с несимметрич­ностью его распределения. Смещение ауксина на теневую или нижнюю сторону стебля усиливает ее рост, что приводит к изги­банию. В геотропизме корня кроме ауксина большую роль игра­ют также ингибиторы, синтезируемые в корневом чахлике расту­щего корня. Ауксин регулирует двигательную реакцию листьев, цветков и усиков растений.

    Определяет апикальное доминирование - растущая верхушка побега подавляет пробуждение и рост пазушных почек. Регуля­ция этого процесса определяется взаимодействием ауксина с цитокининами и гиббереллинами. Гиббереллин усиливает апикальное доминирование. При обработке же цитокинином пазушная почка пробуждается и трогается в рост.

    Стимулирует ризогенез и образование боковых корней . Образова­ние боковых корней является следствием активизации деления клеток перицикла. Вторичное же утолщение корня регу­лируется ауксином совместно с цитокинином. Ауксины регули­руют транспорт и распределение различных веществ в растении, г. е. влияют на полярность тканей и органов растений, в том числе и на полярность корнеобразования (Р. X. Турецкая. 1961). Ауксин стимулирует образование корней на листовых и стебле­вых черенках.

    Регулирует цветение, рост и созревание плодов . Ауксин тормо­зит переход к цветению короткодневных растений и стимулирует длиннодневных . У огурца при обработке ауксином возрастает число женских цветков, увеличивается урожай плодов и семян. Рост цветоноса розеточных растений зависит от транспорта аук­сина из цветка или соцветия. Ауксин пыльцы необходим для роста пыльцевой трубки . Семена являются источником ауксина в развивающихся плодах. При удалении их плод не растет, одна­ко после обработки ауксином его рост возобновляется. Изменяя содержание ауксина в плодах, можно управлять их созреванием. Индуцируют партенокарпию .

Синтетические аналоги ауксина - индолилмасляная кислота (ИМК), нафтилуксусная кислота (НУК), 2-нафтоксиуксусная кислота (НОУК), 2,4-Д, 4Х - обладают высокой физиологичес­кой активностью.

    Регулирует опадание листьев, завязей и плодов . С этой же целью ауксины применяют при пересадке древесных и овощных растений, при старении листьев, плохом опылении цветков, об­разовании излишнего числа завязей и плодов. Образование отде­лительного слоя является результатом уменьшения транспорта ауксина из этих органов в черешок или плодоножку.

    Обработка растений регуляторами роста позволяет уменьшить осыпание за­вязей у томата, предуборочное опадание плодов и ягод, ускорить опадание листьев хлопчатника для комбайновой уборки.