Клубеньковые бактерии живут в симбиозе с. Клубеньковые бактерии - значение в природе. Функции азотфиксирующих бактерий и их взаимодействие с растениями. Значение и перспективы симбиоза бактерий и бобовых растений

Для организмов рода Rhizobium характерна полиморфность, т. е формы бактерий очень разнообразны. Данные микроорганизмы могут быть подвижными и неподвижными, иметь форму кокка или палочки, нитевидную, овальную. Чаще всего молодые прокариоты имеют палочковидную форму, которая с ростом и возрастом изменяется за счет накопления питательных веществ и обездвиживания. В своем микроорганизм проходит несколько стадий, о которых можно судить по его внешнему виду. Изначально это форма палочки, затем так называемой "опоясанной палочки" (имеет пояски с жировыми включениями) и, наконец, бактериод - крупная неподвижная клетка неправильной формы.

Клубеньковые бактерии обладают специфичностью, т. е. они способны поселяться только у

определенной группы или вида растений. Это свойство у микроорганизмов сформировалось генетически. Также важной является и эффективность - способность накапливать атмосферный азот в достаточном количестве для своего растения-хозяина. Данное свойство не является постоянным и может изменяться из-за условий обитания.

О том, как клубеньковые бактерии попадают в корень, нет единого мнения, однако существует ряд гипотез о механизме их проникновения. Так, некоторые ученые считают, что прокариоты внедряются в корень через повреждения его тканей, а другие говорят о проникновении через корневые волоски. Также существует ауксинная гипотеза - предположение о клетках-спутниках, которые помогают бактериям внедряться в клетки корня.

Само же внедрение происходит в две фазы: сперва - инфицирование корневых волосков, затем - образование клубеньков. Длительность фаз различна и зависит от конкретного вида растения.

Значение бактерий, которые способны фиксировать азот, велико для сельского хозяйства, т. к. именно эти организмы могут повышать урожайность. Из данных микроорганизмов готовят которое используют для обработки семян бобовых, что способствует более быстрому инфицированию корней. Различные виды при посадке даже на бедных почвах не требуют дополнительного внесения азотных удобрений. Так, 1 га бобовых «в работе» с клубеньковыми бактериями в течение года переводит в связанное состояние 100-400 кг азота.

Таким образом, клубеньковые бактерии - симбиотические организмы, которые очень важны не только в жизни растения, но и

Толерантность в мире растений, или Симбиоз по-новому

В мире растений существует масса примеров «терпимого» отношения друг к другу. Так, прекрасно уживаются рядом малина и крапива, пшеница и васильки. Корневые системы многих древесных растений вступают в тесную взаимосвязь с мицелием некоторых высших грибов, образуя микоризу . Одним из хрестоматийных примеров подобных взаимоотношений служит и классический симбиоз – взаимосвязь бобовых растений с азотфиксирующими бактериями. Дружественный союз клубеньковых бактерий с бобовыми сформировался очень давно, в процессе эволюционного развития. И сейчас о нем уже можно говорить как о полноценной экологической системе. Между растением-хозяином и бактериями-симбионтами происходит обмен разнообразными химическими соединениями – продуктами обмена веществ. Микробы при этом получают питание (главным образом, сахара) и энергию для собственной жизнедеятельности, отдавая взамен растению азотные соединения и физиологически активные вещества, стимулирующие его рост и развитие.

Бобовые растения, благодаря симбиозу с азотфиксирующими бактериями рода Rhizobium обогащают почву азотными соединениями. Впервые на это обратил внимание Буссенго, а доказательства фиксации азота микробами, живущими в симбиозе с бобовыми растениями, были получены немецкими учеными Хелльригелем и Вильфартом в 1886–1888 гг. Сравнивая источники азота для злаков и бобовых, они обнаружили, что бобовые, в отличие от злаков, получающих азот из минеральных веществ почвы, способны фиксировать атмосферный азот. Хелльригель объяснил подобную способность бобовых растений наличием на их корнях клубеньков, развитие которых вызывается микроорганизмами. Вывод немецкого ученого был подтвержден через несколько лет, когда голландскому бактериологу Мартину Бейеринку удалось выделить азотфиксирующий микроорганизм из клубеньков в чистой культуре. В дальнейшем была показана способность ризобий инфицировать корни бобовых и вызывать образование на них клубеньков, в которых собственно и протекает азотфиксация.

Бактерии рода ризобиум – это аэробные грамотрицательные палочки длиной 0,7–1,8 мкм, живущие в почве и на поверхности растений. При инфицировании бобовых вызывают у последних образование на корнях клубневидных образований.

Образование клубеньков у различных видов растений:
1
– азолла; 2 – клубеньки чины; клевера; вики; 3 – клубеньки на корнях арахиса; 4 – клубеньки на корнях ольхи; 5 – возникновение инфекционных нитей в корневых волосках; 6 – искривление корневых волосков бобовых в присутствии клубеньковых бактерий; 7 – клетки бактерий из клубеньков люцерны; 8 – бактероид клубеньковых бактерий клевера; 9 – клетки клубеньковых бактерий на поверхности волоска; 10 – азотобактер (делящаяся клетка); 11 – клубеньковая ткань ольхи

Молодая, подвижная микробная клетка приближается к корню на основе градиента специфических соединений, выделяемых корнем бобового растения. Белок на поверхности корневых волосков – лектин – «узнает» полисахарид наружной поверхности клеточной стенки бактерии и прочно связывается с ним. Заражение растения происходит только через молодые корневые волоски. Бактерии внедряются в самом конце или около конца волоска и растут в нем в виде инфекционной нити до его основания. Затем такие нити, одетые целлюлозной оболочкой, проникают сквозь тонкие стенки молодых клеток эпидермиса в кору корня. Натолкнувшись здесь на одну из тетраплоидных клеток коры, нить стимулирует деление этой и соседних диплоидных клеток. В результате такого разрастания тканей происходит образование клубеньков. Бактерии в клубеньках размножаются очень быстро и образуют крупные клетки неправильной формы (бактероиды ), объем которых может в 10–12 раз превышать объем свободноживущих ризобий. Бактероиды располагаются по отдельности или группами, окруженные мембраной, в цитоплазме растительных клеток. Ткань, заполненная бактериями, имеет красноватую окраску – она содержит пигмент леггемоглобин, родственный гемоглобину. Образование пигмента – это специфический результат симбиоза: простетическая группа (протогем) синтезируется бактероидами, а белковый компонент при участии растения. Молекулярный азот фиксируют только те клубеньки, в которых имеется леггемоглобин. Фиксация азота происходит только в бактероидах, причем 95% фиксированного азота в виде ионов аммония переходит в цитоплазму растения-хозяина.

Для каждого рода бобовых имеются свои разновидности (штаммы) бактерий, которые называют по названию растения-хозяина. Например, Rhizobium trifolii – клубеньковые бактерии клевера, Rh.lupini – клубеньковые бактерии люпина и пр.

Симбиотическая фиксация азота в корневых клубеньках бобовых: 1 – корень гороха с клубеньками; 2 – клубеньки в разрезе;
3
– растительная клетка в разрезе, заполненная бактериями; 4 – бактерии, находящиеся в клетках растения приобретают необычную форму; 5 – внедрение бактерий через кончики корневых волосков, и рост инфекционных нитей

Однако бобовые растения вовсе не являются монополистами в создании продуктивных связей с азотфиксирующими микроорганизмами. Так, поспорить с бобовыми по степени накопления в почве доступных соединений азота может всем известное древесное растение – ольха (Alnus ). У нее тоже обнаружены клубеньки, представляющие собой густые сплетения корней, разветвленных наподобие кораллов и прекративших рост. Однако микросимбионтами ольхи являются другие микроорганизмы – актиномицеты из рода Franckia . Система клубеньков на корнях ольхи по аналогии с микоризой носит название актиноризы. В настоящее время подобный тип взаимоотношений покрытосеменных растений с азотфиксирующими актиномицетами описан более чем для двух сотен видов, преимущественно древесных. И список этот ежегодно пополняется. Интересно то, что если в симбиозе с ризобиями макросимбионтами являются только растения семейства бобовые, то в отношении актиномицетов список семейств растений-макросимбионтов более обширен. Широко известны симбиозы с актиномицетами таких растений, как облепиха (Hippophae ), лох (Elaengnus ), восковница (Myrica ). Актиноризные растения распространены по всему земному шару, но основная их масса сосредоточена в умеренной зоне, в то время как большинство бобовых предпочитает более теплые области. Накопление азота в почве при участии таких растений может достигать 150–300 кг на 1 га в год. Актиноризный симбиоз был открыт в XIX в., но полезность растений, имеющих актиноризу, для хозяйственной деятельности людей была замечена гораздо раньше.

В течение многих веков ольху высаживали для улучшения почвы в Англии, Южной Америке, Китае и даже на Аляске. В Скандинавии традиционно для этих целей применяют облепиху. Ольха, благодаря наличию актиноризы, улучшает рост сосны, тополя, ели, дуба, ясеня.

Древесные растения-симбионты могут широко применяться для улучшения почв. Черная и серая ольха, высаженные по берегам водоемов, не только закрепляют их, предохраняя почву от размывания, но и значительно обогащают ее азотом, что, в свою очередь, стимулирует появление на ней травяного покрова.
В тропических странах для закрепления почвы и повышения ее плодородия высаживают казуарину прибрежную – тропическое растение, родиной которого является побережье Индийского океана. Кстати у этого растения клубеньки состоят из рыхлого пучка утолщенных корней с отрицательно геотропным ростом.

Уже упоминавшийся М.Бейеринк в 1925 г. обнаружил образования, подобные клубенькам бобовых, на корнях луговых травянистых растений, к семейству бобовых не относящихся. Микроорганизмы, выделенные Бейеринком из корней луговых злаков, относились к роду спирилл – Spirillium lipoferum Beijerinckii. Однако понадобилось почти полвека и немало накопленного фактического материала, чтобы на это явление обратили более пристальное внимание. В 1938 г. русский ученый В.Н. Ногтев обнаружил веретенообразные утолщения на корнях лугового лисохвоста. В 1972 г. М.З. Магавириани описал наличие клубеньков у многих растений, произрастающих на Кавказе. В основном они относились к семейству сложноцветных. Исследуя Сибирский регион, микробиологи И.Л. Клевенская и И.С. Роднюк обнаружили клубеньки на корнях более сотни видов растений, из более чем 20 семействам. Большая часть растений-симбионтов Сибири относилась к однодольным. У травянистых растений рода Gunnera клубеньки на листьях образуют азотфиксирующие бактерии рода Nostoc.

Наконец, остановимся на случае необычного симбиоза растений с микроорганизмами. Но вначале немного истории. Существует не так уж много растений среди огромного их количества, которые люди бы обожествляли. Такой чести удостоился скромный и внешне ничем особо не приметный водный папоротник азолла (Azolla ).

Во вьетнамской провинции Тхай-Пинь расположена небольшая деревушка Лаван, в которой стоит пагода, посвященная богине Азолли. Легенда гласит, что жительница деревни Лаван, вьетнамская крестьянка Ба-Хен, однажды перенесла на свое рисовое поле азоллу. И, о чудо, урожай на ее поле возрос в несколько раз. После смерти крестьянки ее стали почитать как святую, а в честь растения, которое повысило урожай риса, построили пагоду. Азоллу стали использовать как удобрение для рисовых полей. После 1945 г. она широко вошла в практику сельского хозяйства. Необычные свойства папоротника объясняются тем, что он тоже взаимодействует с микробами-азотфиксаторами и благодаря этому обогащает растущий рядом рис доступным азотом.

Необычность симбиоза азоллы с микробами состоит в том, что на корнях не образуется привычных клубеньков или иных выростов. Микробы-азотфиксаторы представлены цианобактериями из рода Anabaena . Цианобактерии занимают полость на нижней стороне листочка папоротника, недалеко от его основания. По мере роста листа и размножения цианобактерий полость заполняется, а входное отверстие зарастает. Образуется камера, в которой затем и происходит усвоение атмосферного азота, свободно проникающего через ткани листа.

Во Вьетнаме на рисовых полях часто встречается азолла перистая (A. pinnata ). Этот водный папоротник широко распространен в водоемах Австралии, тропической Африки и Юго-Восточной Азии. Для него характерна яркая красно-коричневая окраска. Способности к азотфиксации в симбиозе этого вида азоллы с анабеной впечатляющи. В лаборатории папоротник накапливает за сутки до 7 мг чистого азота на 1 г сухой массы. В поле каждый гектар, на котором растет азолла, дает до 1000 – 1400 кг азота в год. Для сравнения: наиболее продуктивная из бобовых культур – люцерна – оставляет в пахотном слое не более 400 кг азота на 1 га. Подобную высокую продуктивность можно объяснить принципиально иными механизмами функционирования системы растение – микроорганизм. Азотфиксация – процесс очень энергоемкий. Источником энергии для нее в системе бобовые – ризобии служат продукты фотосинтеза бобовых. В системе же азолла–анабена оба компонента равно участвуют в фотосинтезе, увеличивая запасы энергии, необходимые для азотфиксации. Благодаря способности к накоплению азота азолла является хорошим белковым кормом для домашних животных. Она содержит до 20–25% белка от сухой массы растений, что вдвое больше, чем у зерновых культур, а также до 35% углеводов. Во Вьетнаме азоллу выращивают в специальных водоемах, собирая по мере разрастания и скармливая скоту.

Для повышения урожая риса азоллу переносят на рисовые поля, уже залитые водой и засаженные молодыми растеньицами риса. Поверхность воды быстро зарастает азоллой, которая через некоторое время, с наступлением жаркого периода, отмирает, образуя большую массу органического удобрения. Распад биомассы папоротника после его отмирания происходит за неделю, а через месяц освободившиеся соединения азота становятся доступными растениям. При этом урожайность риса возрастает на 20%.

Родственницу азоллы перистой можно обнаружить у аквариумистов. Азолла каролинская (A.caroliniana ) – распространенное аквариумное растение. Этот вид азоллы распространен в тропиках и субтропиках Северной и Южной Америки, встречается также на западе Индии. Азолла каролинская образует на поверхности воды красивые плавающие островки. Растение очень нежное, хрупкие стебли покрыты попарно расположенными округлыми листьями от бледно-зеленого до красно-коричневого цветов. Это вид хорошо растет в тропических аквариумах с очень ярким освещением.

Литература

Самсонов С.К. В союзе с микробами. – М.: Знание, 1990.
Полевой В.В. Физиология растений. – М.: Высшая школа, 1989.
Игнатов В.В. Биологическая фиксация азота и азотфиксаторы, 1989.

Изучение взаимодействия бактерий с другими организмами – один из основных разделов микробиологии. Благодаря получению и освоению знаний об этом взаимодействии человек может определить границы влияния бактерий на окружающую среду, соответственно, и на безопасность человеческого сообщества. Симбиоз, характерный для клубеньковых бактерий, разнообразные бактериальные эндосимбиозы и экзосимбиозы – все эти процессы являются неотъемлемой частью окружающего человека органического мира и принципиально влияют на состояние объектов неорганической природы.

Виды взаимодействий

Микробиология дает несколько классификаций бактериальных симбиозов:

Отдельным порядком стоит комменсализм. Это такая связь между бактерией и другим организмом, при которой один из участников получает выгоду, а другой безразличен к установленной связи и к ее продуктам.

Совместное существование растений и бактерий представлено практически всеми видами симбиозов. Один из самых распространенных – факультативное сожительство азотфиксирующих микроорганизмов и бобовых растений.

Представители семейства азотфиксирующих бактерий Rhizobiaceae образуют на корнях бобовых растений так называемые корневые клубеньки, в которых атмосферный азот преобразуется в органические азотсодержащие соединения. Благодаря деятельности азотфиксирующих микроорганизмов ризосфера (почва вокруг корней бобовых растений) насыщается азотсодержащей органикой. Кроме того, сами бобовые растения (например, горох) потребляют продукты жизнедеятельности азотфиксирующих бактерий.

Вследствие высокого содержания органического азота в бобовых, горох, фасоль и другие продукты этой группы рекомендуются для употребления при заболеваниях кишечника и для профилактики онкологических заболеваний системы пищеварения.

Горох, богатый растительным белком, является незаменимым диетическим продуктом в тех случаях, когда пациентам не рекомендуется употреблять в пищу продукты, содержащие белок животного происхождения.Также горох улучшает обмен веществ, нормализует уровень сахара в крови, улучшает работу почек и печени.

Изучив механизм взаимодействия клубеньковых бактерий, человек определил природу полезных свойств гороха и других бобовых, и сегодня все полезные продукты данного симбиоза могут быть произведены синтетическим путем в фармацевтических и промышленных лабораториях.

Взаимодействие с человеком

Человек постоянно живет в содружестве с многочисленным бактериальным сообществом, представленным нескольким десятком основных семейств. Отсутствуют микробы только в крови и лимфе. Все остальные органы и ткани, так или иначе, вступают в контакт либо с самими бактериями, либо с продуктами их жизнедеятельности.

Желудочно-кишечный тракт

ЖКТ населен симбионтами семейства Энтеробактерии (Enterobacteriaceae). Это самое многочисленное сообщество, которое включает в себя роды кишечных патогенных и условно патогенных микроорганизмов. Также в ЖКТ имеется большое количество представителей семейства Лактобацилл (Lactobacillus) – эти микроорганизмы создают кислотную среду, которая подавляет деятельность бактериальных и вирусных патогенов; также лактобактерии очищают кишечник от гнили.

Кожные покровы

Кожа человека населена микроорганизмами в не меньшей степени, нежели ЖКТ. На коже присутствуют стафилококки эпидермидис, коринеформные бактерии, протеи, пропионибактерии, псевдомонады, кишечные микробы и другие.

Активность микробов, которые населяют кожу, зависит от наличия многих подавляющих факторов, а также факторов, которые стимулируют развитие благоприятной среды для роста определенного вида бактерий. Как только такая среда создается, сразу в этом бактериальном сообществе начинает преобладать определенная бактериальная форма, что чаще всего сопровождается инфицированием кожных покровов. При нормальных условиях, когда одна группа сдерживает другую, подобное взаимодействие является естественным биологическим щитом.

Ротовая полость

Во рту также установлено наличие бактериального симбиоза, который регулирует внутреннюю среду ротовой полости и не дает возможности активизироваться патогенной микрофлоре, тем самым защищая ткани самой ротовой полости и верхних дыхательных путей от инфекционных заражений.

Такое взаимодействие и фактическая работа бактериального сообщества по защите человека от патогенов являются универсальным саморегулирующим природным механизмом, который очень аккуратно и оперативно реагирует на все изменения внутри самого организма и в окружающей среде. Поддержание этой естественной защиты является одним из основных аспектов охраны здоровья.

Симбиоз грибов и синезеленых водорослей

Одними из самых ярких симбиозов бактерий и грибов являются примеры сожительства синезеленых водорослей (цианобактерий) и грибов. Такой симбиоз имеет форму хорошо известного лишайника.

Тело гриба является защитным корпусом для бактериального сообщества синезеленых водорослей. Оно обеспечивает защиту от высыхания и осуществляет регулярную поставку воды к бактериальным клеткам, а сами водоросли, которые являются фотосинтезирующими организмами, обеспечивают гриб органическими веществами, необходимыми ему для питания.

Такое взаимовыгодное сотрудничество синезеленых водорослей и грибов позволило лишайникам распространиться в самых сложных климатических условиях и стать одним из обязательных структурных элементов экосистем суровых районов Крайнего Севера.

Симбиотические связи бактерий с бобовыми благодаря широкому использованию их в полевом растениеводстве, луговодстве и, частично, в лесоводстве, изучались весьма интенсивно. Установлено, что не все виды бобовых имеют на корнях клубеньки. При обобщении имеющихся данных, оказалось, что из 1285 изученных бобовых (в широком понимании этой группы) клубеньки отсутствовали у 166 (13,0%), в том числе у 77,4% изученных цезальпиновых, у 13% мимозовых и 7% - мотыльковых (Fabaceae) (E. Allen, O. Allen, 1961).

Отсутствие клубеньков на корнях не всегда означает неспособность данного вида бобовых к симбиозу с клубеньковыми бактериями, иногда это происходит из-за местных условий, неблагоприятных для образований клубеньков, или по тому, что в почве нет соответствующих рас клубеньковых бактерий. В то же время наличие клубеньков на корнях бобовых не всегда указывает на активную фиксацию азота клубеньковыми бактериями. Установлено, что многочисленные мелкие белые клубеньки на боковых корнях травянистых бобовых образованы малоэффективной расой клубеньковых бактерий, неспособной связывать атмосферный азот или фиксирующий его в незначительном количестве, в то время как крупные, окрашенные в розовый цвет клубеньки на стержневом корне обычно характеризуют энергично идущий процесс усвоения азота.

А процесс естественного отбора и сопряженной эволюции возникло много рас клубеньковых бактерий, способных выступать в эффективные симбиотические отношения с определенными видами бобовых. Значение отдельных рас клубеньковых бактерий давно было выяснено для возделываемых видов бобовых, и, в связи с необходимостью в ряде случаев вносить бактериальное удобрение (нитраты), содержащие соответствующие клубеньковые бактерии, они были разделены на ряд групп в соответствии с пригодностью для определенных видов бобовых. Принято выделять следующие расы клубеньковых бактерий по их способности к эффективному симбиозу со следующими определенными видами или группами видов бобовых:

    горох, вика, кормовые бобы;

    фасоль; 3) соя; 4) люпин, сераделла;

5) вигна, магу, арахис; 6) нуж; 7) клевер;

8) люцерна, донник, пажитник; 9) эспарцет;

10) лядвенец (Вознесенская, 1969).

На самом деле число рас клубеньковых бактерий значительно больше.

Выявлена специфичность рас клубеньковых бактерий в пределах уже установленных групп, в частности в "клеверной группе", например у клевера несходного, клубеньки возникают лишь при участии особой расы клубеньковых бактерий.

Эта специфичность проявляется также в значительных различиях фиксируемого ими азота в зависимости от вида клевера, с которым они связаны. В таблице 12 показано, что наиболее эффективные для клеверов лугового и ползучего расы клубеньковых бактерий для клевера подземного были наименее эффективными, и наоборот. Расы, обеспечивающие фиксацию очень значительных количеств азота при инокуляции ими клевера подземного, в симбиозе с клевером луговым и ползучим фиксировали незначительное количество азота. Все это обусловило выделение среди "клеверной группы" трех подгрупп: А - клевера ползучий, луговой, розовый, простертый, зямляничный; В - подземный, инкармантный, скученный, александрийский; С - несходный. Три подгруппы выделяют и среди "люцерновой группы".

Таблица 12.

Способность отдельных рас клубеньковых бактерий фиксировать атмосферный азот при симбиозе с различными видами клевера (содержание азота в мг на 8 растений; по White et al., 1953).

Возможность фиксации атмосферного азота клубеньковыми бактериями и количество фиксированного азота определяются также средой - отсутствием условий, ограничивающих жизнедеятельность бактерий и бобовых растений (высокая кислотность, высокое содержание растворимого алюминия, плохая аэрация и др.), а также достаточной обеспеченностью фосфором, калием, кальцием, молибденом, серой, кобальтом, водой и др. Фиксация азота клубеньковыми бактериями снижается по мере увеличения содержания в почве растворимых форм азота, доступных для бобовых. Большое значение имеют условия освещения, поскольку клубеньковые бактерии получают от бобового углеводы, необходимые им как энергетический материал для фиксации азота, и потому зависят от фотосинтеза. При затенении резко снижается не только число клубеньков, но и их размеры, а также предельная глубина их образования.

Клубеньковые бактерии более экономно используют энергию, необходимую для фиксации азота, затрагивая 3-4 г углеводов на 1 г азота, в то время как свободноживущие азотфиксирующие бактерии затрачивают 50 - 100 и более граммов на фиксацию 1 г азота. Это связано с тем, что у свободноживущих азотфиксаторов фиксация азота происходит в процессе их роста, и потому большое количество энергии потребляется на этот рост. Кроме того, в целях создания благоприятных условий для активности нитрогеназы - фермента, участвующего в фиксации азота, для снижения парциального давления кислорода усиливается дыхание, что связано с затратой энергии. Эти расходы энергии отсутствуют у клубеньковых бактерий. Поскольку фиксация азота происходит в бактероидах, клетках, прекративших рост, а внутри клубеньков создаются благоприятные условия для активности нитрогеназы. В том числе сниженное содержание кислорода. Очень существенно то, что фиксируемый клубеньковыми бактериями азот на 90 - 95% передается бобовым растениям. Бобовые, получая связанный азот от клубеньковых бактерий, не зависят или мало зависят от обеспечения минеральным азотом почвы и потому могут успешно произрастать совместно с другими растениями на почвах, бедных доступными формами азота.

Количество азота, фиксируемого клубеньковыми бактериями бобовых, сильно варьирует от фитоценоза к фитоценозу, а в пределах конкретных фитоценозов может изменяться от года к году. Оно определяется участием бобовых в фитоценозах, условиями среды и эффективностью соответствующих рас бактерий. Для некоторых лугов в Новой Зеландии с травостоями, где преобладает клевер, отмечена фиксация азотом до 450 - 550 кг/га.

Фиксация азота в столь больших количествах возможна лишь в условиях исключительно благоприятного климата Новой Зеландии (равномерное распределение большого количества атмосферных осадков, отсутствие засух, благоприятные тепловые условия, возможность вегетации в течении всего года), когда растения в результате применения известкования и внесения удобрений произрастают в условиях благоприятных для них реакций почвы и обеспечены необходимыми зольными элементами. Однако, даже в Новой Зеландии среднее количество азота, фиксируемого клубеньковыми бактериями бобовых, входящих в состав луговых травостоев, составляло 185 кг/га (колебания достигали 85 - 340 кг/га от луга к лугу и в среднем от года к году 145 - 225 кг/га). В годы с более влажным и прохладным летом оно было выше, а в годы с сухим, более теплым летом - ниже. Данные о сходных количествах фиксируемого азота клубеньковыми бактериями бобовых получены для Ирландии (в среднем 160 кг/га) и Южной Англии (250 - 270 кг/га) и относятся к лугам, созданным путем посева трав. На природных лугах нашей страны, в травостоях которых бобовые принимают меньшее участие, количество азота, фиксируемого клубеньковыми бактериями, как правило, не более 30 - 50 кг/га. В посевах многолетних трав (бобовых или бобовых в смеси со злаками) количество фиксируемого азота обычно не превышает 200 кг/га.

Давно замечено, что бобовые благоприятно влияют на произрастающие совместно с ними злаки и другие растения, в том числе увеличивают содержание азота в их органах. На основе результатов вегетационных опытов Виртанен пришел к выводу, что такое воздействие связано с прижизненными выделениями из корней бобовых в почву значительных количеств азотсодержащих соединений. Проверка результатов опытов Виртанена, проведенная в СССР, Шотландии, США, Австралии, не подтвердила его выводов. Оказалось, что в условиях нормального фотосинтеза бобовые не выделяют в почву сколь-либо заметных количеств азотистых соединений. Лишь с ослаблением фотосинтеза (при сниженной интенсивности освещения), когда растения не располагают достаточным количеством углеводов и органических кислот для связывания всего фиксируемого клубеньковыми бактериями азота, часть его может выделяться в почву. Благоприятное влияние бобовых на другие растения можно объяснить поступлением в почву азота с их отмирающими органами, у древесных растений - в основном с опадом, у травянистых (в фитоценозах, используемых как сенокосы и пастбища) - преимущественно с отмирающими подземными органами. На пастбищах злаки получают азот бобовых из экскрементов скота, поедающих их. Так как бобовые, если фиксация азота клубеньковыми бактериями идет достаточно активно, не поглощают из почвы азот или поглощают его в незначительных количествах, на долю небобовых растений остается больше доступных форм азота, и потому они растут лучше с бобовыми, чем в их отсутствие. Совместное произрастание бобовых с небобовыми растениями оказывает благоприятное влияние на фиксацию азота клубеньковыми бактериями, так как в результате поглощения небобовыми азота из почвы содержание его доступных форм снижается до незначительных величин, что стимулирует фиксацию азота.

Биологическая фиксация азота.

Баланс доступного растениям азота на Земном шаре поддерживается за счет деятельности особой группы организмов - так называемых азотфиксаторов. В экономике природы процессам биологической фиксации азота принадлежит исключительная роль, которая по значению вполне равнозначна процессу фотосинтеза.

В группу азотфиксаторов входят свободно живущие организмы, а также организмы, способные существовать лишь в симбиозе с другими видами.

Первой в ряду свободно живущих азотфиксаторов открыта анаэробная спороносная бактерия Clostridium pasterianum. Это открытие принадлежит русскому ученому С. Н. Виноградскому (1893). Через 8 лет (1901) М. Бейеринком был открыт аэробный микроорганизм, названный азотбактером (Azotobacter).

Оба организма являются сапрофитами. Для восстановления молекулярного азота они используют энергию, получаемую ими при окислении глюкозы и других органических соединений (например, маннита). На каждый грамм сброженной глюкозы азотбактер накапливает около 15 мг связанного азота, тогда как Clostridium - не более 2 -3 мг.

Выделив азотбактер, Бейринк обратил внимание на большое сходство свойств этого микроорганизма со свойствами фотосинтезирующей бактерии Chromatium. В настоящее время установлено, что способность фиксировать азот широко распространена у различных видов бактерий. Эта функция свойственна, в частности, сульфатредуцирующим бактериям, развитие которых осуществляется в анаэробных условиях. Способностью ассимилировать молекулярный азот обладает также пурпурная бактерия Rhodospirillum rubrum (Чест и Камен).

К свободно живущим азотфиксаторам принадлежат также синезеленые водоросли (Nostoc, Phormidium). Осуществляемая ими ассимиляция молекулярного азота имеет в особенности большое значение для пресноводных бассейнов, для развития растений риса на заливаемых водой плантациях и т.п. Благодаря своей крайне четко выраженной автотрофности синезеленые водоросли способны заселять голые скалы; они развиваются на вулканической пыли, пензе и т.д.

Общий уровень азотфиксирующей активности свободно живущих организмов невысок. В зависимости от вида и условий существования они накапливают в год от 10 до 30 - 40 кг связанного азота на гектар.

Основную роль в пополнении убыли запасов связанного азота выполняют бактерии - симбиоты, в первую очередь Bacterium radicicola. В настоящее время известно, что кроме бобовых имеется еще около 100 видов других растений, на корнях которых развиваются специфические для каждого растения клубеньковые бактерии.

Химическая природа взаимодействия бобовых с клубеньковыми бактериями изучена неполно, в связи с чем ряд факторов в этой области не находит еще объяснения. Например, установлено, что клубеньковые бактерии способны восстанавливать молекулярный азот только при взаимодействии с корнями бобовых растений. Этой способности лишены бактерии, культивируемые в искусственных средах. Клубеньковые бактерии развивались на корнях бобовых растений и в том случае, если последние служили подвоем, а привоем - любое другое растение. В тех вариантах, где бобовые служили привоем, а подвоем - различные небобовые растения, бактерии не развивались.

Все это показывает, что тканям бобовых должны быть свойственны определенные особенности.

Представитель экспериментального направления в физиологии растений. Замечательный французский ученый Жан Батист Буссенго первый широко использовал в своих исследованиях по питанию метод выращивания растений в вегетационных сосудах. Точные эксперименты позволили Буссенго опровергнуть представления Либиха об азотном питании растений. Буссенго первый отметил специфические особенности бобовых растений как азотсобирателей, а вслед за тем Гельригель открыл, что эту роль бобовые выполняют в симбиозе с клубеньковыми бактериями. Большое значение имели исследования русского ботаника М. С. Воронина, который первый сформулировал представление о клубеньках как о болезненных образованиях, возникающих в результате заражения корней.

Симбиоз корней высших растений с грибами носят название микориз, симбиозы с бактериями - бактериориз. В зависимости от формы симбиотрофизма различают микоризы экто- и эндотрофные. Первые развиваются на поверхности корней, вторые проникают внутрь ткани. Классическим примером бактериотрофизма является взаимодействие бобовых растений с клубеньковыми бактериями.

Исследования микробиологов, проведенные в последние годы, значительно расширили представления о значении симбиотрофизма в процессах корневого питания растений.

Число микробных телец, приходящихся на 1 г почвы, исчисляется многими сотнями миллионов и даже миллиардами. Некоторое представление об этом дают цифры, заимствованные из работ Н. А. Красильникова:

Почвенные микроорганизмы сосредоточены в основном в зоне размещения корней.

Важное значение азотфиксирующих бактерий диктует необходимость обеспечения наиболее благоприятных условий для их развития и физиологической деятельности.

Один из путей решения этой важной практической задачи состоит в увеличекнии численности микробного населения почвы с помощью бактериальных удобрений.

Данное мероприятие в равной степени оправдывает себя в отношении как клубеньковых бактерий, так и свободно живущих азотфиксаторов.

Дело в том, что даже при длительной культуре бобовых растений, почвы, занятые ими содержат нередко недостаточное количество Bact. radicicola, в результате чего на корнях образуется мало клубеньков, либо они не образуются вовсе. В этих условиях бобовые не обогащают почву азотом, а аналогично другим растениям истощают имеющиеся в ней азотистые соединения.

Искусственное обогащение почвы клубеньковыми бактериями оказывает весьма благоприятное влияние на азотный баланс почвы и на развитие бобовых и других растений севооборота. Препарат клубеньковых бактерий, который называется нитрагином, вносят вместе с семенами бобовых при посеве. При приготовлении нитрагина следует учитывать специфичность клубеньковых бактерий.

Кирилл Сысоев

Мозолистые руки не знают скуки!

Первые почвенные бактерии, которые заметило человечество – клубеньковые. Из 13 тыс. растений формируют клубенек около 1300, а в сельском хозяйстве используются 200. Из них все обладают функцией фиксировать атмосферный азот. В почве на клубеньке поселяются и размножаются микроорганизмы – симбионты, которые заменяют удобрения.

Что такое клубеньковые бактерии

Больше 2 тыс. лет назад земледельцы заметили, что бедные, выработавшие ресурс почвы дают урожаи после возделывания на них бобовых культур. Следующие попытки раскрыть секрет были в 1838 г.: Ж.-Б. Буссенго решил, что листья бобовых фиксируют азот, однако опыты с неблагоприятной водной средой не подтвердили это. В 1901 г. была открыта Azotobacter chroococcum (6 видов из рода азотобактер). Первый препарат на основе «земляных» бактерий Нитрагин был создан в 1897-м.

Все клубеньковые бактерии – это микроаэрофилы. Им свойственна палочковидная/овальная форма. Относятся Rhizobium (Rhizobiales) к способным переводить газообразную форму азота в усвояемую растениями – растворимую. Факты:

  1. По тому, насколько влияют микроорганизмы на урожай, их разделяют на активные (эффективно обогащают почву), малоактивные и неактивные (неэффективные).
  2. Когда нет влаги, они не размножаются, поэтому при засушливом климате специально зараженные растения вводят в почву глубже.
  3. Оптимальная температура для размножения всех представителей азотфиксирующих – 20-30°С, но рост продолжается и при 0-35°С. Лучшая среда (pH) – нейтральная, порядка 6,5-7,1, а вот кислая вызывает гибель колоний.
  4. Благодаря опытам Московской сельхозакадемии выяснилось, что даже при условии отсутствия «доноров» бактериальный материал не покидает почву до 50 лет.
  5. Микроорганизмы способны пережить даже условия после атомного взрыва, выдержать гамма-излучение и ультрафиолет, солнечную радиацию, но не могут обитать при высокой температуре.
  6. Максимальное значение микроорганизмы имеют для развития корня.

Роль клубеньковых бактерий в природе

Помимо фиксации атмосферного азота роль клубеньковых бактерий в природе очень велика. В процессе размножения они «занимаются» синтезом витаминов, природных антибиотиков, способствуют развитию сначала корня, а затем и ботвы. Польза заключается в том, что почвенные бактерии азотфиксирующего типа за счет симбиоза с растениями:

  • являются частью круговорота вещества – азота;
  • синтезируют фитогормоны, стимулируя рост растений;
  • могут использоваться как способ самоочищения загрязненных тяжелыми металлами почв при минерализующих факторах (природных/предприятиях);
  • разлагают некоторые хлорсодержащие соединения.

Бобовые растения и клубеньковые бактерии

  • через повреждение тканей;
  • проникновением через корневые волоски;
  • внедрением через молодые верхушки корня;
  • благодаря бактериям-спутницам.

Симбиотические бактерии рода Ризобиум, проникнув в корень, перемещаются в его ткани, легко преодолевая межклеточное пространство группами или одиночными клетками (как у люпина). Чаще же клетка при размножении образовывают инфекционные нити (тяжи, колонии). Их количество различается по типам растений. Часто встречаются общие нити заражения, формирующие один клубенек.

Фиксация азота бактериями

Ценность, которую представляет фиксация азота бактериями, огромна: это не только восстанавливает почву, но и позволяет получать более богатые урожаи, чем на перегное или химических удобрениях. Происходит взаимодействие вещества и азотфиксатора:

  • у Azotobacter («автономных», не требующих наличия растения) – ферментами, за счет кислорода в клетке;
  • у Rhizobium (клубеньковые бактерии) – только в присутствии магния, серы, железа.

Азотфиксирующие растения

По растениям группируются виды, на которые подразделяются азотфиксирующие бактерии. В сельском хозяйстве учитывают, что бобовые – не единственные «хозяева» природных удобрений, помогающих усваивать атмосферный азот. Другие привлекательные для азотфиксирующих растения – это, как пример:

  • донник;
  • люцерна;
  • клевер;
  • фасоль, горох (не только пищевой, но и коровий), вика, чина;
  • люпин и сераделла.