Последовательность редупликации днк. Общая биология. Строение и функции нуклеиновых кислот АТФ

Матрица – материнская цепочка ДНК.

Продукт – новосинтезированная цепочка дочерней ДНК.

Комплементарность между нуклеотидами материнской и дочерней цепочек ДНК двойная спираль ДНК раскручивается на две одинарных, затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности.

Транскрипция (синтез РНК)

Матрица – кодирующая цепочка ДНК.

Продукт – РНК.

Комплементарность между нуклеотидами кДНК и РНК.

В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности стоится иРНК. Затем она отсоедииняется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка)

Матрица – иРНК

Продукт – белок

Комплементарность между нуклеотидами кодонов иРНК и нуклеотидами антикодонов тРНК, приносящих аминокислоты.

Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

    инициация репликации

    элонгация

    терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтоминициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон.

Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационнаявилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация.

    Особенности организации генома эукариот и прокариот. Классификация нуклеотидных последовательностей: уникальные, среднеповторяющиеся, высокоповторяющиеся. Регуляция экспрессии генов у эукариот.

Главная количественная особенность генетического материала эукариот – наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК – экзонов). В то же время размер генома человека 3×10 9 (три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК. Существует значитель­ное число видов, геном которых в десятки раз больше ге­нома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть не­однозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хро­мосом данного вида.

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с по­мощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1.Уникальные , т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2.Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3.Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы , число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) не кодирующие последовательности, которые входят в состав прицентромерногогетерохроматина.

Уэукариот объем наследственного материала значительно больше. В отличие отпрокариот в эукариотических клетках одновременно активно транскрибируется от 1 до 10% ДНК. Состав транскрибируемых последовательностей и их количество зависят от типа клетки и стадии онтогенеза. Значительная часть нуклеотидных последовательностей у эукариот не транскрибируется вообще - молчащая ДНК.

Большой объем наследственного материала эукариот объясняется существованием в нем помимо уникальных также умеренно и высоко повторяющихся последовательностей. Эти высоко повторяющиеся последовательности ДНК располагаются в основном в гетерохроматине, окружающем центромерные участки. Они не транскрибируются. Характеризуя наследственный материал прокариотической клетки в целом, необходимо отметить, что он заключен не только в нуклеоиде, но также присутствует в цитоплазме в виде небольших кольцевых фрагментов ДНК -плазмид.

Плазмиды - это широко распространенные в живых клетках внехромосомные генетические элементы, способные существовать и размножаться в клетке автономно от геномной ДНК. Описаны плазмиды, которые реплицируются не автономно, а только в составе геномной ДНК, в которую они включаются в определенных участках. В этом случае их называют эписомами.

В прокариотических (бактериальных) клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.

В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл - митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки (вирусоподобными частицами). Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами. В митохондриях, например содержится от 2 до 10 копий мтДНК.

Внехромосомная ДНК составляет лишь небольшую часть наследственного материала эукариотической клетки.

    Особенности экспрессии генетической информации у прокариот. Оперонная модель регуляции экспрессии генов у прокариот Ф. Жакоба и Ж. Моно.

Современная теория регуляции экспрессии генов у прокариот была предложена французскими исследователями Ф.Жакобом и Ж.Моно, которые исследовали биосинтез у E.сoli ферментов, метаболизирующих лактозу. Обнаружено, что при культивировании E.сoli на глюкозе содержание ферментов, метаболизирующих лактозу, минимально, но при замене глюкозы на лактозу происходит взрывоподобное усиление синтеза ферментов, расщепляющих лактозу на глюкозу и галактозу, и обеспечивают последующий метаболизм последних. У бактерий существуют ферменты 3-х типов:

а) конститутивные, которые присутствуют в клетках в постоянных количествах, независимо от их метаболического состояния;

б) индуцибельные – их количество в клетках при обычных условиях незначительно, но может увеличиваться в сотни и тысячи раз, если в культуральную среду добавлять субстраты этих ферментов;

в) репрессабельные – ферменты, синтез которых в клетке прекращается при добавлении в среду конечных продуктов тех метаболических путей, где функционируют эти ферменты. На основании этих фактов и была сформулирована теория оперона. Оперон – это комплекс генетических элементов, отвечающих за координированный синтез ферментов, которые катализируют ряд последовательных реакций. Различают индуцибельные опероны, активатор которых - исходный субстрат метаболического пути. При отсутствии субстрата белок-супрессор блокирует оператор и не дает РНК-полимеразе транскрибировать структурные гены. При появлении субстрата определенное его количество связывается с белком- репрессором, тот теряет сродство к оператору и покидает его. Это приводит к разблокированию транскрипции структурных генов. Репресабельные опероны – для них регулятором служит конечный метаболит. В его отсутствии белок- репрессор имеет низкое сродство к оператору и не мешает считыванию структурных генов (ген включен). При накоплении конечного метаболита, определенное его количество связывается с белком-репрессором, который приобретает повышенное сродство к оператору и блокирует транскрипцию генов.

    Классификация генов: структурные, функциональные (гены-модуляторы, ингибиторы, интенсификаторы, модификаторы); гены, регулирующие работу структурных генов (регуляторы и операторы), их роль в реализации наследственной информации.

Классификация генов:

    Структурные

    Функциональные

А) гены-модуляторы – усиливают или подавляют проявления других генов;

Б) ингибиторы - вещества, тормозящие какой либо биологический процесс;

В) интенсификаторы

Г) модификаторы - ген, усиливающий или ослабляющий действие главного гена и неаллельный ему

3) ген-регулятор – его функция заключается в регуляции процесса транскрипции структурного гена (или генов);

4) ген-оператор - расположен рядом со структурным геном (генами) и служит местом связывания репрессора.

Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулыбелка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

    Аллель гена. Множественные аллели как результат изменения нуклеотидной последовательности гена. Полиморфизм гена как вариант нормы и патологии. Примеры.

Аллель - конкретная форма существования гена, занимающая определённое место в хромосоме, ответственное за признак и его развитие.

Полигенное наследование не подчиняется законам Менделя и не соответствует классическим типам аутосомно-доминантного, аутосомно-рецессивного наследования и наследования, сцепленного с X-хромосомой.

1. Признак (заболевание) контролируется сразу несколькими генами. Проявление признака во многом зависит от экзогенных факторов.

2. К полигенным болезням относятся расщелина губы (изолированная или с расщелиной неба), изолированная расщелина неба, врожденный вывих бедра, стеноз привратника, дефекты нервной трубки (анэнцефалия, позвоночная расщелина), врожденные пороки сердца.

3. Генетический риск полигенных болезней в большой степени зависит от семейной предрасположенности и от тяжести заболевания у родителей.

4. Генетический риск значительно снижается с уменьшением степени родства.

5. Генетический риск полигенных болезней оценивают с помощью таблиц эмпирического риска. Определить прогноз нередко бывает сложно.

    Ген, его свойства (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия). Примеры.

Ген -структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойств.

Ген как единица функционирования наследственного материала имеет ряд свойств:

    дискретность - несмешиваемость генов;

    стабильность - способность сохранять структуру;

    лабильность - способность многократно мутировать;

    множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

    аллельность - в генотипе диплоидных организмов только две формы гена;

    специфичность - каждый ген кодирует свой признак;

    плейотропия - множественный эффект гена;

    экспрессивность - степень выраженности гена в признаке;

    пенетрантность - частота проявления гена в фенотипе;

    амплификация - увеличение количества копий гена.

    Независимое и сцепленное наследование признаков. Хромосомная теория наследственности.

Наряду с признаками, наследуемыми независимо, обнаружены признаки, наследуемые совместно (сцепленно). Экспериментальное наследование этого явления, проведенное Т.Г. Морганом и его группой (1910-1916), подтвердило хромосомную локализацию генов и легло в основу хромосомной теории наследственности.

Уважаемые старшеклассники! Эта рабочая тетрадь написана для того, чтобы вы научились отвечать на самые разные по типам и формулировкам вопросы. Часто их называют «Тестовыми заданиями». Для того, чтобы успешно это делать, необходимо знать, какие бывают задания, чем отличается один тип заданий от другого. Первая тема рабочей тетради имеет следующие части: обучающую, тренировочную и контрольную. Остальные темы содержат только тренировочную и контрольную части (зачеты). В обучающей части показаны примеры рассуждений, даются ответы на большинство вопросов и комментарии к ним. В тренировочной части ответы также приводятся, однако объяснить правильность выбора должны вы сами. Для этого в свободных строках нужно дописать необходимые аргументы, опровергающие неверные ответы. Заполненные строки подскажут логику рассуждений.
Наконец, в контрольной части вам полностью и самостоятельно нужно выполнить работу. Используя тетрадь при изучении курса «Общая биология», вы научитесь правильно понимать смысл задания, самостоятельно задавать вопросы и отвечать на них, доказывать правильность своих ответов и опровергать неверные ответы. В обучающей и тренировочной частях вы познакомитесь с заданиями разного уровня сложности, чаще всего встречающимися в разных проверочных работах. Контрольная часть также включает как совсем простые, так и более сложные вопросы. Практически все вопросы и задания направлены на подготовку к сдаче различных форм экзаменов, но, прежде всего, ЕГЭ. Именно с этим связана и такая структура, и такая форма рабочей тетради. Она рассчитана не только на индивидуальную, но и на совместную работу с учителем или с одноклассниками.

Виды заданий, встречающиеся в проверочных, контрольных, экзаменационных работах (примеры заданий цитируются по демонстрационной версии ЕГЭ 2007 г.)

Обучающая часть

Приступая к работе с тетрадью, внимательно изучите примеры заданий разных видов. Научитесь их узнавать. Тестовые задания делятся на следующие виды.

1. Задания с выбором одного правильного ответа из нескольких.

Отвечая на подобный вопрос необходимо очень внимательно его прочитать и точно понять его смысл. О чем спрашивается в вопросе? О признаках научного метода исследования. Что является этими признаками? Особенности строения и число хромосом. Можно ли обнаружить эти признаки, не проникая в клетку? Нет, нельзя. Какой из перечисленных методов позволяет проникнуть в клетку с помощью микроскопа? Только цитогенетический. Значит это и будет правильным ответом.
Можно выбрать и другой, более длинный, путь рассуждений, вспоминая особенности других методов исследования.

Выбор правильного ответа на этот вопрос может быть как предельно простым, так и достаточно сложным. Если вы точно поняли смысл вопроса и знаете, что хроматида отличается от молекулы ДНК по своей структуре и образуется в процессе деления клетки в интерфазе митоза, то выбор прост – правильный ответ – 1.
Сомнения могут привести к следующим рассуждениям: пункты 2 и 3 достаточно очевидны, и их нельзя выбирать в качестве правильного ответа. В неделящейся клетке хроматиды не образуются, а кольцевая молекула ДНК, существующая в бактериальной клетке, не обладает структурой хроматиды. Могут смутить пункты 1 и 4, т.к. память подсказывает, что хромосома состоит из двух хроматид, а молекула ДНК – из двух цепей. Вот тут и следует еще раз прочитать вопрос и вдуматься в его смысл. ДНК – это часть хроматиды, поэтому правильный ответ – 1.

2. Задания с выбором нескольких правильных ответов.

Для выполнения задания с выбором нескольких правильных ответов нужно хорошо помнить признаки объекта или уметь делать выводы на основании уже имеющейся у вас информации. Данный вопрос требует от вас как точного знания, памяти, так и умения вывести правильные ответы на основании имеющейся у вас информации. Сначала попытайтесь выбрать те пункты, в которых вы уверены. Например, вы точно знаете, что все клетки имеют цитоплазму. Следовательно, первый выбранный пункт – 2. Все клетки покрыты клеточной мембраной, либо их органоиды имеют мембранное строение. Значит и пункт 4 можно выбрать в качестве правильного. Логика подсказывает, что не может существовать клетка без белков, ибо любая живая система использует белки в качестве структурного компонента. Но эти белки должны синтезироваться, а значит должен быть аппарат, на котором проходит биосинтез. Это рибосомы. Значит и ответ 6 верен.

Вы можете выбрать и другой путь рассуждения, но в целом он будет похож на предложенный нами.

3. Задания на сопоставление объекта с его свойствами, особенностями

Соотнести, сопоставить – это значит связать между собой объект и его свойства, качества. Так, например, объектом может быть определенная наука – анатомия или физиология, а его свойствами – предмет изучения науки, т.е. те явления или процессы, которые она изучает.

Задания этого типа требуют от вас такой операции, как выбор признаков для сравнения объектов. Отвечая на эти вопросы, необходимо воспользоваться знаниями, которые у вас есть. Некоторые из них вы приобрели не только на уроках, но и в результате жизненного опыта. Например, вы хорошо знаете, что лягушки развиваются в воде, большинство из них гладкие и скользкие. Вот уже два признака земноводных вы можете отметить. Вы также знаете, что крокодилы, змеи, черепахи и ящерицы откладывают яйца на суше и не заботятся о своем потомстве. Значит, в яйцах должен быть большой запас питательных веществ. Лягушки мечут икру. Это хорошо известный факт. А вот какое у них оплодотворение, следует подумать. Однако в вопросе есть слова «у большинства видов». Если знать, что у пресмыкающихся оплодотворение всегда внутреннее, то понятно, что пункт Б относится к земноводным. С детства вы знаете, что лягушка проходит несколько стадий развития: из яйца появляется головастик, который затем превращается во взрослое земноводное. У пресмыкающиеся таких превращений не происходит. Проанализировав этот комментарий, вы сами можете назвать правильные ответы.

4. Задания на определение последовательности событий, явлений, процессов

При выполнении таких заданий надо уметь представить себе процесс или действие, о котором идет речь. Кроме того, всегда надо искать в вопросе указание, с какого пункта следует начать выстраивать последовательность. Если такого указания нет значит, эта последовательность может быть только строго определенной.

Отвечая на это вопрос, надо определить начальный и конечный моменты процесса. В данном случае конечный момент очевиден – это пункт Д. Вопрос может возникнуть о последовательности пунктов А и Б, но нужно знать, что любые биохимические реакции начинаются с действия ферментов. Следовательно, начальный этап – Б. Тогда раскручивание молекулы – это второй этап (А), далее последовательность становится понятной – сначала разделение частей (В), а затем наращивание новых (Г). Таким образом, ответ: БАВГД.

5. Задания со свободным ответом

C1. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, объясните их.

Этот вопрос требует от вас точного знания признаков царства грибов. Первое предложение не содержит ошибок. В нем нет противоречий ни по одному пункту. Во втором предложении такие противоречия есть. Все ли грибы – многоклеточные организмы? Нет, не все. Дрожжи – это одноклеточные грибы. Также допущены ошибки в 3 и 4 предложениях. Среди грибов автотрофных организмов нет. Они не способны ни к фотосинтезу, ни к хемосинтезу. Наконец, надо помнить, что стенки клеток грибов образованы хитином, а не целлюлозой. Таким образом, правильные ответы на вопросы подобного типа связаны с применением имеющихся знаний и поиском противоречий в вопросе.

Это достаточно сложный вопрос, потому что следует решить, какие признаки нужно назвать. Как должно выглядеть обоснование ответа? Прежде всего, следует помнить, что не нужно отвечать на вопросы слишком пространно. Чем лаконичнее ответ, тем лучше. Он должен быть максимально точен. Приступим к рассуждениям. Какие противоречия необходимо разрешить растениям при выходе из воды на сушу? Первое, что становится очевидным, – защита от потерь воды. В водной среде эта проблема решена. Значит должны быть приспособления, регулирующие процесс испарения. Это устьица, а впоследствии кутикула, видоизмененные листья. Дальше надо вспомнить о том, что растениям необходимо было поднимать воду на определенную высоту. Значит, нужна проводящая система, которая действительно возникла у первых наземных растений. Водные растения были подвижны и эластичны. Их тело колебалось под влиянием течений, но не ломалось. На суше необходимо выдерживать напоры ветра. Поэтому должны были появиться механические ткани, а также органы, закрепляющие растение в почве, – ризоиды, корни, корневища.

Следовательно, ответ может быть таким.

1. Возникновение покровной ткани (эпидермиса с устьицами), способствующей защите от испарения.
2. Появление проводящей системы, обеспечивающей транспорт веществ.
3. Развитие механической ткани, выполняющей опорную функцию.
4. Образование ризоидов, с помощью которых растения закреплялись в почве.

Тренировочная часть

В этой части вы познакомитесь с приемами анализа вопроса, научитесь комментировать как правильные, так и неправильные ответы. Этот опыт покажет вам, что с помощью тестовых заданий можно не только проверять свои знания, но и учиться отвечать на вопросы разных типов.

Тема: «Основные закономерности явлений наследственности»

Моно- и дигибридное скрещивание

Дополните комментарии к ответам.

А10. Какое потомство получится при скрещивании комолой гомозиготной коровы (ген комолости В доминирует) с рогатым быком:

А11. У кареглазого мужчины и кареглазой женщины родились три кареглазых девочки и один голубоглазый мальчик. Ген карих глаз доминирует. Каковы генотипы родителей?

Варианты ответов

1) отец АА, мать Аа
2) отец аа , мать АА
3) отец аа , мать Аа
4) отец Аа , мать Аа

Какой углевод входит в состав нуклеотидов РНК?

1) рибоза2) глюкоза3) урацил4) дезоксирибоза

2) К полимерам относятся:

1) крахмал, белок, целлюлоза 3) целлюлоза, сахароза, крахмал

2) белок, гликоген, жир 4) глюкоза, аминокислота, нуклеотид.

3) Ученый, открывший клетку:

1) Р.Гук; 3) Т. Шванн

2); Р.Броун 4) М. Шлейден

4. Найдите правильное продолжение выражения «фотолиз воды происходит внутри...»:

1) митохондрий на стенках крист; 3) пластид, в строме;

2) пластид, в тилакоидах; 4) мембран ЭПС.

5. В течение световой фазы фотосинтеза растение использует световую энергию для образования:

1) АТФ из АДФ и Ф; 3) НАДФ + + Н 2 -> НАДФ Н;

2) Глюкозы и углекислого газа; 4) О 2 из СО 2 .

6.Темновые реакции фотосинтеза протекают в:

а)строме хлоропластов; в)мембранах тилакоидов;

б)рибосомах хлоропластов; г)гранах.

Что общего между фотосинтезом и процессом окисления глюкозы?

1) оба процесса происходят в митохондриях;

2) оба процесса происходят в хлоропластах;

3) в результате этих процессов образуется глюкоза;

4) в результате этих процессов образуется АТФ.

8. В результате какого процесса органические вещества об­разуются из неорганических?

1)биосинтез белка; 3) синтез АТФ;

2)фотосинтез; 4) гликолиз.

9. Энергетически ценным продуктом анаэробного гликолиза являются две молекулы:

1) молочной кислоты; 3) АТФ;

2) пировиноградной кислоты; 4) этанола.

10. Какой из нуклеотидов не входит в состав ДНК:

1) тимин; 2) урацил; 3) аденин; 4) цитозин

При половом размножении появляется

1) меньшее разнообразие генотипов и фенотипов, чем при бесполом

2) большее разнообразие генотипов и фенотипов, чем при бесполом

3) менее жизнеспособное потомство

4) потомство, менее приспособленное к среде обитания

Каждая новая клетка происходит от такой же путем её

1) деления 3) мутации

2) адаптации 4) модификации

Закладка органов в эмбриональном развитии млекопитающих происходит на этапе

1) бластулы 3) дробление

2) нейрулы 4) гаструлы

Из каких зародышевых структур образуется нервная система и эпидермис кожи животных?

1)мезодермы 3) энтодермы

2)эктодермы 4) бластометров

Деление ядра при размножении происходит у

1) амебы обыкновенной 3) стафилококка

2) холерного вибриона 4) бациллы сибирской язвы

Генетическая информация родителей объединяется в потомстве при размножении

1) почкованием 3) семенами

2) вегетативном 4) спорами

17. Число хромосом при половом размножении в каждом поколении возрастало бы вдвое, если бы в ходе эволюции не сформировался процесс:

18. Первая анафаза мейоза завершается:

1) расхождением к полюсам гомологичных хромосом;

2) расхождение хроматид;

3) образованием гамет;

4) кроссинговером.

19. ДНК клетки несет информацию о строении:

1) белков, жиров и углеводов; 3) аминокислот;

2) белков и жиров; 4) ферментов.

20. Ген кодирует информацию о структуре:

1) нескольких белков;

2) одной из комплиментарных цепей ДНК;

3) аминокислотной последовательности в одной молекуле белка;

4) одной аминокислоты.

21. При репликации одной молекулы ДНК синтезируются новые цепи. Их количество в двух новых молекулах равно:

1) четырем; 2) двум; 3) одному; 4) трем.

22. Если в молекуле ДНК 20% составляют цитозиновые нуклеотиды, то процент тиминовых нуклеотидов равен:

1) 40%; 2) 30%; 3) 10%; 4) 60%.

23.Трансляцией называется процесс:

1) образование и-РНК; 3) образование белковой цепи на рибосоме;

2) удвоение ДНК; 4) соединения т-РНК с аминокислотами.

24. Какой закон проявится в наследовании признаков при скрещивании

организмов с генотипами: Аа х Аа?

1) единообразия 3) сцепленного наследования

2) расщепления 4) независимого наследования

25. Укажите особенности модификационной изменчивости.

1) возникает внезапно

2) проявляется у отдельных особей вида

3) изменения обусловлены нормой реакции

4) проявляется сходно у всех особей вида

5) носит адаптивный характер

6) передаётся потомству

Соотнесите вещества и структуры, участвующие в синтезе белка, с их функциями, проставив рядом с цифрами нужные буквы.

Установите в какой последовательности происходит процесс редупликации ДНК

А) раскручивание спирали молекулы

Б) воздействие ферментов на молекулу

В) отделение одной цепи от другой на части молекулы ДНК

Г) присоединение к каждой цепи ДНК комплементарных нуклеотидов

Д) образование двух молекул ДНК из одной

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Читайте также:
  1. Аналоговые электромеханические приборы для измерений силы тока и напряжения. Электростатические измерительные механизмы
  2. Антидоты: определение. Основные механизмы антидотного действия
  3. В.63. Диагностика банкротства механизмы фин.стабилизации пр-ия.
  4. Важнейшие принципы разделения функции управления инфраструктуры и ресурсов территорий, и механизмы их эффективного функционирования.
  5. Взаимодействие органов местного самоуправления с предприятиями различных форм собственности: цели и механизмы.
  6. Волевая регуляция, ее критерии, функции и психологические механизмы.
  7. Вопрос 4. Вспомогательные механизмы выделения частиц из потока.

Репликация ДНК - это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК.

При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.

Репликацию ДНК осуществляет фермент ДНК-полимераза.

В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК)

Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность

Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает:

1) разрыв водородных связей и расплетение нитей двойной спирали;

2) синтез на одиночных нитях комплементарных цепей.

В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая - синтезированная заново (полуконсервативный механизм Репликация).

Процесс редупликации :

Раскручивание спирали молекулы - отделение одной цепи от другой на части молекулы ДНК

Воздействие фермента ДНК-полимеразы на молекулу

Присоединение к каждой цепи ДНК комплементарных нуклеотидов

Образование двух молекул ДНК из одной.

Функциональная единица репликации – репликон (начало – инициация, конец – завершение). Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен).

Рост полинуклеотидной цепи идет только с ее З"-конца, т. е. в направлении 5" : 3". Фермент, катализирующий эту реакцию - ДНК – полимераза .

Репликационная вилка асимметрична . Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая – с перерывами. Первую называют ведущей, или лидирующей , цепью, а вторую – отстающей.

В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки (праймеры) , состоящие примерно из 10 нуклеотидов, с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5" : 3" с помощью фермента РНК-праймазы.



РНК-праймеры затем наращиваются дезоксинуклеотидами с 3"-конца ДНК-полимеразой, которая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5"-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки ) отстающей цепи насчитывают у бактерий 1000-2000 дезоксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов.

Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. Завершает весь процесс фермент ДНК-лигаза , катализирующий образование фосфодиэфирной связи между группой З"-ОН нового фрагмента ДНК и 5"-фосфатной группой предыдущего фрагмента.

Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи нескольких специальных белков. Геликазы расплетают короткие участки ДНК, находящиеся непосредственно перед репликационной вилкой.

К каждой из разделившихся цепей присоединяется несколько молекул ДНК-связывающих белков, которые препятствуют образованию комплементарных пар и обратному воссоединению цепей.



В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q-репликацией. Кольцевые молекулы ДНК закручены сами на себя (суперспирализованы), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собственной оси. При этом возникает торсионное напряжение, которое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту функцию выполняет фермент ДНК-топоизомераза .

ДНК – полимераза

ДНК-полимераза - фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.