Открытие существования молекулы и атома. Откуда мы знаем, что все состоит из атомов? Кто доказал существование молекул

В ходе исследований катодных лучей, испускаемых отрицательным электродом (катодом) в вакуумной трубке при электрическом разряде, Жан Батист Перрен в 1895 г. показал, что они являются потоком отрицательно заряженных частиц. Вскоре стало распространяться мнение, что эти отрицательные частицы, названные электронами, представляют собой составную часть атомов.

Атомная теория утверждала, что элементы составлены из дискретных частиц, называемых атомами, и что химические соединения состоят из молекул, частиц большего размера, содержащих два или более атомов. К концу XIX в. атомная теория получила широкое признание среди ученых, особенно среди химиков. Однако некоторые физики полагали, что атомы и молекулы - это не более чем фиктивные объекты, которые введены из соображения удобства и полезны при численной обработке результатов химических реакций. Австрийский физик и философ Эрнст Мах считал, что вопрос о первичном строении материи принципиально неразрешим и не должен быть предметом исследования ученых. Для сторонников атомизма подтверждение дискретности материи было одним из принципиальных вопросов, остававшихся нерешенными в физике.

Продолжая разрабатывать атомную теорию, Перрен выдвинул в 1901 г. гипотезу, что атом представляет собой миниатюрную Солнечную систему, но не смог это доказать.

В 1905 г. Альберт Эйнштейн опубликовал работу о броуновском движении, в которой были даны теоретические обоснования молекулярной гипотезы. Он дал определенные количественные предсказания, однако необходимые для их проверки эксперименты требовали настолько большой точности, что Эйнштейн сомневался в их осуществимости. С 1908 по 1913 г. Перрен (вначале не зная о работе Эйнштейна) выполнил тончайшие наблюдения над броуновским движением, которые подтвердили предсказания Эйнштейна.

Перрен понял, что если движение взвешенных частиц вызывается столкновениями с молекулами, то, основываясь на хорошо известных газовых законах, можно предсказать их средние смещения за определенный промежуток времени, если знать их размер, плотность и некоторые характеристики жидкости (например, температуру и плотность). Требовалось только правильно согласовать эти предсказания с измерениями, и тогда появилось бы веское подтверждение существования молекул. Однако получить частицы нужных размеров и однородности было не так просто. После многих месяцев кропотливого центрифугирования Перрену удалось выделить несколько десятых грамма однородных частиц гуммигута (желтоватого вещества, получаемого из млечного сока растений). После измерения характеристик броуновского движения этих частиц результаты оказались вполне соответствующими молекулярной теории.

Распределение конечных точек горизонтальных смещений частицы камеди, перенесенных параллельно самим себе так, чтобы начала всех смещений находились в центре окружности, опубликованное в работе Перрена ”Броуновское движение и реальность молекул”.

Перрен также изучал седиментацию, или оседание, мельчайших взвешенных частиц. Если молекулярная теория верна, рассуждал он, частицы, размеры которых меньше определенного, вовсе не будут опускаться на дно сосуда: направленная вверх компонента импульса, полученного в результате соударений с молекулами, будет постоянно противодействовать направленной вниз силе тяжести. Если суспензия не подвергается возмущениям, то в конце концов установится седиментационное равновесие, после чего концентрация частиц на различной глубине не будет изменяться. Если свойства суспензии известны, то можно предсказать равновесное распределение по вертикали.

Перрен провел несколько тысяч наблюдений, весьма изощренно и остроумно пользуясь микроскопической техникой и подсчитывая число частиц на разной глубине в одной капле жидкости с шагом по глубине всего в двенадцать сотых миллиметра. Он обнаружил, что концентрация частиц в жидкости экспоненциально убывает с уменьшением глубины, причем числовые характеристики столь хорошо согласовались с предсказаниями молекулярной теории, что результаты его опытов были широко признаны как решающее подтверждение существования молекул. Позже он придумал способы измерения не только линейных смещений частиц в броуновском движении, но и их вращения. Исследования Перрена позволили ему вычислить размеры молекул и число Авогадро, т.е. число молекул в одном моле (количестве вещества, масса которого, выраженная в граммах, численно равна молекулярному весу этого вещества). Он проверил полученное им значение числа Авогадро с помощью пяти различных типов наблюдений и нашел, что она удовлетворяет им всем с учетом минимальной экспериментальной ошибки. (Принятое ныне значение этого числа составляет примерно 6,02·1023; Перрен получил величину на 6% более высокую.) К 1913 г., когда он суммировал уже многочисленные к тому времени свидетельства дискретной природы материи в своей книге “Les Atomes” - «Атомы» реальность существования как атомов, так и молекул была признана почти повсеместно.

В 1926 г. Перрен получил Нобелевскую премию по физике «за работу по дискретной природе материи и в особенности за открытие седиментационного равновесия».

Процесс познания складывается таким образом, что блестящие догадки и великие теории, появлению которых мы обязаны творческим гениям, через некоторое время становятся едва ли не тривиальными фактами, которые большинством людей принимается на веру. Многие ли из нас могли бы самостоятельно, на основе наблюдений и размышлений, догадаться, что Земля круглая или что Земля вращается вокруг Солнца, а не наоборот, и наконец, что существуют атомы и молекулы? С высоты современной науки основные положения атомно-молекулярной теории выглядят прописными истинами. Давайте, однако, отвлечемся от давно известных научных результатов, поставим себя на место ученых прошлого и попытаемся дать ответ на два главных вопроса. Во-первых, из чего состоят вещества? Во-вторых, почему вещества бывают разными и почему одни вещества могут превращаться в другие? На решение этих сложных вопросов наука уже потратила более 2 000 лет. В результате появилась атомно-молекулярная теория, основные положения которой можно сформулировать следующим образом.

  • 1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.
  • 2. Молекулы состоят из атомов. Атом - наименьшая частица элемента в химических соединениях. Разным элементам соответствуют разные атомы.
  • 3. Молекулы и атомы находятся в непрерывном движении.
  • 4. При химических реакциях молекулы одних веществ превращаются в молекулы других веществ. Атомы при химических реакциях не изменяются.

Как же ученые догадались о существовании атомов?

Атомы были придуманы в Греции в V в. до н. э. Философ Левкипп (500-440 до н. э.) задался вопросом, можно ли каждую частичку материи, какая бы малая она ни была, разделить на еще более мелкие частицы. Левкипп считал, что в результате такого деления можно получить настолько малую частицу, что дальнейшее деление станет невозможным.

Ученик Левкиппа философ Демокрит (460-370 до н. э.) назвал эти крошечные частицы «атомами» (атомос - неделимый). Он считал, что атомы каждого элемента имеют особые размеры и форму и что именно этим объясняются различия в свойствах веществ. Вещества, которые мы видим и ощущаем, образуются при соединении между собой атомов различных элементов, и, изменив природу этого соединения, можно одно вещество превратить в другое.

Демокрит создал атомную теорию почти в современном виде. Однако эта теория была лишь плодом философских размышлений, не связанных с природными явлениями и процессами. Она не была подтверждена экспериментально, поскольку древние греки вообще не проводили экспериментов, они ставили размышления выше наблюдений.

Первый эксперимент, подтверждающий атомную природу вещества, был проведен лишь спустя 2000 лет. В 1662 г. ирландский химик Роберт Бойль (1627-1691) при сжатии воздуха в U-образной трубке под давлением столбика ртути обнаружил, что объем воздуха в трубке обратно пропорционален давлению:

Французский физик Эдм Мариотт (1620-1684) подтвердил это соотношение через 14 лет после Бойля и заметил, что оно выполняется только при постоянной температуре.

Результаты, полученные Бойлем и Мариоттом, можно объяснить, только если признать, что воздух состоит из атомов, между которыми имеется пустое пространство. Сжатие воздуха обусловлено сближением атомов и уменьшением объема пустого пространства.

Если газы состоят из атомов, можно допустить, что твердые вещества и жидкости тоже состоят из атомов. Например, вода при нагревании кипит и превращается в пар, который, подобно воздуху, можно сжать. Значит, водяной пар состоит из атомов. Но если водяной пар состоит из атомов, почему жидкая вода и лёд не могут состоять из атомов? А если это справедливо для воды, это может быть справедливо и для других веществ.

Таким образом, эксперименты Бойля и Мариотта подтвердили существование мельчайших частиц вещества. Оставалось выяснить, что из себя представляют эти частицы.

В течение последующих 150 лет усилия химиков были направлены в основном на установление состава различных веществ. Вещества, которые разлагались на менее сложные вещества, были названы соединениями (сложными веществами), например вода, углекислый газ, железная окалина. Вещества, которые нельзя разложить, назвали элементами (простыми веществами), например водород, кислород, медь, золото.

В 1789 г. великий французский химик Антуан Лоран Лавуазье (1743-1794) опубликовал знаменитую книгу «Элементарный курс химии» (Traite elementaire de chimie), в которой систематизировал накопленные к тому времени знания по химии. В частности, он привел список всех известных элементов, который содержал 33 вещества. Два названия в этом списке были принципиально ошибочными (свет и теплород), а восемь оказались впоследствии сложными веществами (известь, кремнезём и другие).

Развитие техники количественных измерений и методов химического анализа позволило определять соотношение элементов в химических соединениях. Французский химик Жозеф Луи Пруст (1754-1826) после тщательных экспериментов с рядом веществ установил закон постоянства состава.

I Все соединения, независимо от способа получения, содержат эле- . менты в строго определенных весовых пропорциях.

Так, например, сернистый газ, получаемый сжиганием серы, действием кислот на сульфиты или любым другим способом, всегда содержит 1 весовую часть (массовую долю) серы и 1 весовую часть кислорода.

Оппонент Пруста, французский химик Клод Луи Бертолле (1748-1822), напротив, утверждал, что состав соединений зависит от способа их получения. Он считал, что, если в реакции двух элементов один из них взят в избытке, то и в образующемся соединении весовая доля данного элемента будет также больше. Пруст, однако, доказал, что Бертолле получил ошибочные результаты из-за неточного анализа и использования недостаточно чистых веществ.

Удивительно, но ошибочная для своего времени идея Бертолле в настоящее время положена в основу большого научного направления в химии - химического материаловедения. Главная задача материаловедов - получение материалов с заданными свойствами, а основной метод - использование зависимости состава, структуры и свойств материала от способа получения.

Закон постоянства состава, открытый Прустом, имел фундаментальное значение. Он привел к мысли о существовании молекул и подтвердил неделимость атомов. В самом деле, почему в сернистом газе S0 2 весовое (массовое) соотношение серы и кислорода всегда 1:1, а не 1,1: 0,9 или 0,95: 1,05? Можно предположить, что при образовании частицы сернистого газа (впоследствии эта частица была названа молекулой) атом серы соединяется с определенным числом атомов кислорода, причем масса атомов серы равна массе атомов кислорода.

А что происходит, если два элемента могут образовывать между собой несколько химических соединений? На этот вопрос дал ответ великий английский химик Джон Дальтон (1766-1844), который из эксперимента сформулировал закон кратных отношений (закон Дальтона).

I Если два элемента образуют между собой несколько соединений, то. в этих соединениях массы одного элемента, приходящиеся на единицу массы другого элемента, относятся как небольшие целые числа.

Так, в трех оксидах железа на единицу веса (массы) кислорода приходятся 3,5, 2,625 и 2,333 весовых частей (массовых долей) железа соответственно. Отношения этих чисел таковы: 3,5: 2,625 = = 4:3; 3,5: 2,333 = 3: 2.

Из закона кратных отношений следует, что атомы элементов соединяются в молекулы, причем молекулы содержат небольшое число атомов. Измерение массового содержания элементов позволяет, с одной стороны, определять молекулярные формулы соединений, а с другой - находить относительные массы атомов.

Например, при образовании воды одна весовая часть водорода соединяется с 8 весовыми частями кислорода. Если предположить, что молекула воды состоит из одного атома водорода и одного атома кислорода, окажется, что атом кислорода в 8 раз тяжелее атома водорода.

Рассмотрим обратную задачу. Мы знаем, что атом железа в 3,5 раза тяжелее атома кислорода. Из соотношения

следует, что в данном соединении на два атома железа приходится три атома кислорода, т. е. формула соединения - Fe 2 0 3 .

Рассуждая таким образом, Дальтон составил первую в истории таблицу атомных весов элементов. К сожалению, она оказалась во многих отношениях неверной, поскольку при определении атомных весов Дальтон часто исходил из неправильных молекулярных формул. Он считал, что атомы элементов почти всегда (за редким исключением) соединяются попарно. Формула воды по Дальтону - НО. Кроме того, он был уверен, что молекулы всех простых веществ содержат по одному атому.

Правильные формулы воды и многих других веществ были определены при исследовании химических реакций в газовой фазе. Французский химик Жозеф Луи Гей-Люссак (1778-1850) обнаружил, что один объем водорода реагирует с одним объемом хлора и получаются два объема хлороводорода; при электролитическом разложении воды образуются один объем кислорода и два объема водорода и т. д. Это эмпирическое правило было опубликовано в 1808 г. и получило название закона объемных отношений.

I Объемы реагирующих газов относятся друг к другу и к объемам газо- . образных продуктов реакции как небольшие целые числа.

Смысл закона объемных отношений выяснился после великого открытия итальянского химика Амедео Авогадро (1776-1856), сформулировавшего гипотезу (предположение), которая позднее была названа законом Авогадро.

| В равных объемах любых газов при постоянных температуре и дав- ? лении содержится одинаковое число молекул.

Это означает, что все газы ведут себя в некотором смысле одинаково и что объем газа при заданных условиях не зависит от природы (состава) газа, а определяется только числом частиц в данном объеме. Измеряя объем, мы можем определить число частиц (атомов и молекул) в газовой фазе. Великая заслуга Авогадро состоит в том, что он смог установить простую связь между наблюдаемой макроскопической величиной (объемом) и микроскопическими свойствами газообразных веществ (числом частиц).

Анализируя объемные соотношения, найденные Гей-Люссаком, и используя свою гипотезу (которую впоследствии назвали законом Авогадро), ученый установил, что молекулы газообразных простых веществ (кислорода, азота, водорода, хлора) двухатомные. Действительно, при реакции водорода с хлором объем не изменяется, следовательно число частиц также не изменяется. Если предположить, что водород и хлор одноатомны, в результате реакции присоединения исходный объем должен уменьшиться в два раза. Но после реакции объем не изменяется, значит, молекулы водорода и хлора содержат по два атома и реакция идет по уравнению

Аналогично можно установить молекулярные формулы сложных веществ - воды, аммиака, углекислого газа и других веществ.

Как это ни странно, но современники не оценили и не признали выводы, сделанные Авогадро. Ведущие химики того времени Дж. Дальтон и Йенс Якоб Берцелиус (1779-1848) возражали против предположения, что молекулы простых веществ могут быть двухатомные, поскольку полагали, что молекулы образуются только из разных атомов (положительно и отрицательно заряженных). Под давлением таких авторитетов гипотеза Авогадро была отвергнута и постепенно забыта.

Лишь почти через 50 лет, в 1858 г. итальянский химик Станислао Канниццаро (1826-1910) случайно обнаружил работу Авогадро и понял, что она позволяет четко разграничить понятия «атом» и «молекула» для газообразных веществ. Именно Канниццаро предложил определения атома и молекулы, которые приведены в начале данного параграфа, и внес полную ясность в понятия «атомный вес» и «молекулярный вес». В 1860 г. в г. Карлсруэ (Германия) состоялся Первый международный химический конгресс, на котором после долгих дискуссий основные положения атомно-молекулярной теории получили всеобщее признание.

Подведем итоги. В развитии атомно-молекулярного учения можно выделить три фундаментальных этапа.

  • 1. Рождение атомного учения, появление идеи (гипотезы) о существовании атомов (Левкипп и Демокрит).
  • 2. Первое экспериментальное подтверждение атомной теории в опытах со сжатым воздухом (закон Бойля-Мариотта).
  • 3. Открытие важной закономерности о том, что в молекуле атомы разных элементов присутствуют в определенных весовых соотношениях (закон кратных отношений Дальтона), и установление формул газообразных простых веществ (гипотеза Авогадро).

Интересно, что, когда было высказано предположение о существовании атомов, теория была впереди эксперимента (сначала атомы были придуманы, а через 2000 лет это было доказано). В случае молекул эксперимент опередил теорию: идея существования молекул была выдвинута для объяснения экспериментального закона кратных отношений. В этом смысле история атомно-молекулярной теории - характерный пример, который отражает разные пути научных открытий.

Горы, звезды, люди - все, что мы видим вокруг, состоит из крошечных атомов. Атомы маленькие. Очень и очень. С детства мы знаем, что все вещество состоит из скоплений этих крошечных штучек. Также мы знаем, что их нельзя увидеть невооруженным глазом. Мы вынуждены слепо верить этим заявлениям, не имея возможности проверить. Атомы взаимодействуют друг с другом и по кирпичикам составляют наш мир. Откуда мы это знаем? Многие не любят принимать утверждения ученых за чистую монету. Давайте вместе с наукой пройдем путь от осознания атомов до непосредственного доказательства их существования.

Может показаться, что есть простой способ доказать существование атомов: засунуть их под микроскоп. Но этот подход не сработает. Даже самые мощные микроскопы, фокусирующие свет, не могут визуализировать один атом. Объект становится видимым, поскольку отражает световые волны. Атомы настолько меньше длины волны видимого света, что они вовсе не взаимодействуют. Иными словами, атомы невидимы даже для света. Однако атомы все же оказывают наблюдаемые эффекты на некоторые вещи, которые мы можем увидеть.


Сотни лет назад, в 1785 году, голландский ученый Ян Ингенхауж изучал странное явление, которое не мог понять. Мельчайшие частицы угольной пыли шныряли на поверхности какого-то спирта в его лаборатории.

50 лет спустя, в 1827 году, шотландский ботаник Роберт Броун описал нечто удивительно похожее. Изучая пыльцевые гранулы под микроскопом, Броун обнаружил, что некоторые гранулы испускают крошечные частицы - которые затем удалялись от пыльцы в случайном нервном танце.

Сначала Броун подумал, что частицы были каким-то неизвестным организмом. Он повторил эксперимент с другими субстанциями, вроде каменной пыли, которая явно была неживой, и снова увидел странное движение.

Потребовалось почти сто лет, чтобы наука нашла объяснение. Пришел Эйнштейн и разработал математическую формулу, которая предсказывала тот самый особенный тип движения - тогда названный броуновским движением, в честь Роберта Броуна. Теория Эйнштейна заключалась в том, что частицы пыльцевых гранул постоянно перемещались, поскольку в них врезались миллионы крошечных молекул воды - молекул, состоящих из атомов.

«Он объяснил, что это нервное движение, которое вы наблюдаете, на самом деле вызывалось воздействием отдельных молекул воды на частички пыли или что там у вас есть», - объясняет Гарри Клифф из Кембриджского университета, также куратор Музея науки в Лондоне.

К 1908 году наблюдения, подкрепленные расчетами, показали, что атомы реальны. За десять лет физики существенно продвинулись вперед. Растягивая отдельные атомы, они начали понимать их внутреннюю структуру.

Сюрпризом стало то, что атомы можно разделить - особенно в свете того, что само название «атом» вышло из греческого «атомос», означающего «неделимый». Но физики теперь знают, что атомы далеко не базовые кирпичи. Они состоят из трех основных частей: протонов, нейтронов и электронов. Представьте, что протоны и нейтроны вместе образуют «солнце», или ядро, в центре системы. Электроны находятся на орбите этого ядра, подобно планетам.


Если атомы невообразимо малы, то эти субатомные частицы и вовсе. Забавно, но первой обнаружили самую малую частицу из трех - электрон. Чтобы понять разницу размеров, имейте в виду, что протоны в ядре в 1830 раз больше электрона. Представьте себе чупа-чупс на орбите воздушного шара - несоответствие будет примерно таким.

Но как мы узнали, что эти частицы там? Ответ в том, что они хоть и маленькие, но имеют большое влияние. Британский физик Томсон, открывший электроны, использовал прекрасный метод, чтобы доказать их существование в 1897 году.

У него была трубка Крукса - кусок стекла смешной формы, из которого машиной был высосан почти весь воздух. К одному концу трубки подводили отрицательный электрический заряд. Этого заряда было достаточно, чтобы выбить у молекул оставшегося в трубке газа часть электронов. Электроны заряжены отрицательно, поэтому летели к другому концу трубки. Благодаря частичному вакууму, электроны пролетали через трубку, не встречая на своем пути крупные атомы.

Электрический заряд приводил к тому, что электроны двигались очень быстро - порядка 59 500 километров в секунду - пока не врезались в стекло на дальнем конце, выбивая еще больше электронов, которые прятались в его атомах. Удивительно, но столкновение между этими умопомрачительно крошечными частицами производило столько энергии, что порождало фантастическое зелено-желтое свечение.

«Это был в некотором смысле один из первых ускорителей частиц, - говорит Клифф. - Он ускоряет электроны на одном конце трубки к другому, и они врезаются в экран на другом конце, производя фосфоресцирующее свечение».

Поскольку Томсон обнаружил, что может управлять пучками электронов с помощью магнитов и электрических полей, он знал, что это были не просто странные лучи света, - это были заряженные частицы.

И если вам интересно, как эти электроны могут летать независимо от своих атомов, то это благодаря процессу ионизации, в котором - в данном случае - электрический заряд меняет структуру атома, выбивая электроны в пространство поблизости.

В частности, благодаря тому что электронами так просто манипулировать и двигать, стали возможны электрические схемы. Электроны в медном проводе движутся подобно поезду от одного атома меди к другому - потому-то провод передается по проводу. Атомы, как мы уже сказали, это не цельные кусочки вещества, а системы, которые можно модифицировать или разобрать на структурные элементы.


Открытие электрона показало, что нужно узнать об атомах побольше. Работа Томсона показала, что электроны отрицательно заряжены - но он знал, что атомы сами по себе не имеют общего заряда. Он предположил, что они должны содержать загадочные положительно заряженные частицы, чтобы компенсировать отрицательно заряженные электроны.

Начала 20 века выявили эти положительно заряженные частицы и в то же время раскрыли внутреннюю структуру атома - похожую на солнечную систему.

Эрнест Резерфорд и его коллеги взяли очень тонкую металлическую фольгу и поставили ее под луч положительно заряженного излучения - поток крошечных частиц. Большая часть мощного излучения прошла насквозь, как и полагал Резерфорд, учитывая толщину фольги. Но, к удивлению ученых, часть его отскочила.

Резерфорд предположил, что атомы в металлической фольге должны содержать небольшие плотные области с положительным зарядом - ничто иное не обладало бы достаточным потенциалом, чтобы отразить такое мощное излучение. Он обнаружил положительные заряды в атоме - и одновременное доказал, что все они связаны в плотной массе, в отличие от электронов. Другими словами, он продемонстрировал существование плотного ядра в атоме.

Оставалась проблема. К тому моменту уже могли рассчитать массу атома. Но учитывая данные о том, какими тяжелыми должны были быть частицы ядра, идея того, что все они положительно заряжены, не имела смысла.

«Углерод имеет шесть электронов и шесть протонов в ядре - шесть положительных зарядов и шесть отрицательных зарядов, - объясняет Клифф. - Но ядро углерода не весит шесть протонов, оно весит эквиваленту 12 протонов».

Сначала предположили, что в ядре есть шесть других ядерных частиц с массой протона, но заряженных отрицательно: нейтроны. Но никто не смог это доказать. На самом деле, нейтроны не могли найти до 1930-х годов.


Кембриджский физик Джеймс Чедвик отчаянно пытался открыть нейтрон. Он работал над этой теорией много лет. В 1932 году ему удалось осуществить прорыв.

За несколько лет до этого другие физики экспериментировали с радиацией. Они запускали положительно заряженное излучение - того типа, который использовал Резерфорд в поисках ядра - в атомы бериллия. Бериллий испускал собственную радиацию: излучение, которое не было заряжено положительно или отрицательно и могло проникать глубоко в материал.

К этому времени другие выяснили, что гамма-излучение было нейтральным и проникало глубоко, поэтому физики считали, что именно его испускают атомы бериллия. Но Чедвик так не считал.

Он самостоятельно произвел новое излучения и направил его на вещество, которое, как он знал, было богатым на протоны. Неожиданно оказалось, что протоны были выбиты из материала словно бы частицами с идентичной массой - будто шарики для бильярда другими шариками.

Гамма-излучение не может отражать протоны таким образом, поэтому Чедвик решил, что искомые частицы должны иметь массу протона, но другой электрический заряд: и это нейтроны.

Все основные частицы атома были найдены, но на этом история не заканчивается.

Хотя мы узнали об атомах много больше, чем знали раньше, их было трудно визуализировать. В 1930-х годах никто не располагал их снимками - и многие люди хотели их увидеть, чтобы принять их существование.

Важно отметить, впрочем, что методы, используемые учеными вроде Томсона, Резерфорда и Чедвика, проложили путь к новому оборудованию, которое в конце концов помогло нам произвести эти снимки. Пучки электронов, которые Томсон генерировал в своем эксперименте с трубкой Крукса, оказались особенно полезными.

Сегодня подобные пучки генерируются электронными микроскопами, и самый мощный из таких микроскопов может на самом деле делать снимки отдельных атомов. Это потому, что электронный пучок обладает длиной волны в тысячи раз короче пучка света - настолько короткой, по сути, что волны электронов могут отражаться от крошечных атомов и выдавать картинку, чего не могут световые пучки.

Нил Скиппер из Университетского колледжа в Лондоне говорит, что такие изображения полезны для людей, которые хотят изучать атомную структуру специальных веществ - вроде тех, что используются в производстве батарей для электромобилей, к примеру. Чем больше мы знаем об их атомной структуре, тем лучше нам удается проектировать батареи, делать их эффективными и надежными.

Можно также понять, как выглядят атомы, просто тыкнув в них. Так, по сути, работает атомно-силовая микроскопия.


Идея в том, чтобы поднести кончик чрезвычайно малого зонда к поверхности молекулы или вещества. При достаточной близости зонд будет чувствителен к химической структуре того, на что указывает, и изменение сопротивления по мере движения зонда позволит ученым произвести снимки, к примеру, отдельной молекулы.

Скиппер добавляет, что многие атомные ученые исследуют, как структура вещей меняется при воздействии высокого давления или температуры. Большинство людей знает, что когда вещество нагревается, оно часто расширяется. Теперь можно обнаружить атомные изменения, которые происходят при этом, что зачастую оказывается полезным.

«При нагревании жидкости можно заметить, как ее атомы принимают неупорядоченную конфигурацию, - говорит Скиппер. - Вы можете увидеть это непосредственно из структурной карты».

Скиппер и другие физики также могут работать с атомами, используя нейтронные пучки, впервые обнаруженые Чедвиком в 1930-х.

«Мы запускаем много пучков нейтронов в образцы материалов, и из возникающего паттерна рассеяния можно понять, что вы рассеиваете нейтроны в ядрах, - говорит он. - Можно грубо прикинуть массу и размер объекта, который просвечивался».

Но атомы не всегда просто находятся там, в стабильном состоянии, ожидая, пока их изучат. Иногда они распадаются - то есть являются радиоактивными.

Существует множество естественных радиоактивных элементов. Этот процесс генерирует энергию, которая легла в основу ядерной энергетики - и ядерных бомб. Физики-ядерщики, как правило, пытаются лучше понять реакции, при которых ядро проходит через фундаментальные изменения вроде этих.


Лаура Харкнесс-Бреннан из Ливерпульского университета специализируется на изучении гамма-лучей - типа излучения, испускаемого распадающимися атомами. Радиоактивный атом определенного типа испускает особую форму гамма-луча. Это значит, вы можете идентифицировать атомы, только регистрируя энергию гамма-лучей - этим, собственно, Харкнесс-Бреннан и занимается в своей лаборатории.

«Типы детекторов, которые вы должны использовать, представлены детекторами, которые позволят вам измерять одновременно присутствие излучения и энергии радиации, которая была отложена, - говорит она. - Все потому, что у всех ядер есть особый отпечаток».

Поскольку в области, где была обнаружена радиация, могут присутствовать все типы атомов, особенно после крупной ядерной реакции, важно точно знать, какие радиоактивные изотопы присутствуют. Такое обнаружение обычно проводится на ядерных станциях или в зонах, где произошла ядерная катастрофа.

Харкнесс-Бреннан и ее коллеги сейчас работают над системами обнаружения, которые можно разместить в таких местах, чтобы показать в трех измерениях, где может присутствовать радиация в конкретном помещении. «Вам нужны техники и инструменты, которые позволят составить трехмерную карту пространства и подскажут, где в этой комнате, в этой трубе радиация», - говорит она.

Также можно визуализировать излучение в «камере Вильсона». В рамках этого специального эксперимента охлажденный до -40 градусов по Цельсию спиртовый пар распыляется облаком над радиоактивным источником. Заряженные частицы радиации, летящие от источника излучения, выбивают электроны из молекул спирта. Спирт конденсируется в жидкость рядом с дорожкой излучаемых частиц. Результаты такого типа обнаружения впечатляют.

Мы мало работали непосредственно с атомами - разве что поняли, что это прекрасные сложные структуры, которые могут претерпевать удивительные изменения, многие из которых происходят в природе. Изучая атомы таким образом, мы улучшаем собственные технологии, извлекаем энергию из ядерных реакций и лучше понимаем природный мир вокруг нас. Мы также получили возможность защищать себя от радиации и изучать, как меняются вещества в экстремальных условиях.

«Учитывая, насколько мал атом, просто невероятно, как много физики мы можем извлечь из него», - метко подмечает Харкнесс-Бреннан. Все, что мы видим вокруг себя, состоит из этих мельчайших частиц. И хорошо знать, что они там есть, поскольку именно благодаря им все вокруг стало возможным.

По материалам BBC

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ОНТОЛОГИИ И ТЕОРИИ ПОЗНАНИЯ

Теория броуновского движения и экспериментальное доказательство реального существования атомов и молекул

Выполнил: аспирант

Физического факультета

Крисилов А.В.

Воронеж 2010

Атомная структура материи

Открытие Роберта Броуна

Теория броуновского движения

1Альберт Эйншнейн - первая теория броуновского движения

2Марианн Смолуховский - происхождение законов вероятности в физике

Доказательства реального существования атомов и молекул

1Жан Батист Перрен - решающие эксперименты

2Теодор Сведберг - определение размеров белковой молекулы

Современная наука и броуновское движение

Литература

1.Атомная структура материи

материя броуновский молекула атом

Существенный признак того, что в обыденной жизни и в науке мы обозначаем как случайность, можно кратко определить следующимобразом: малые причины - большие следствия.

М. Смолуховский

Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи и при рассмотрении все более мелких количеств необходимо где-то остановиться. Для них атом был последней неделимой частью материи, после которой уже нечего было искать. Современная физика также исходит из представления об атомной структуре материи, но с ее точки зрения атом представляет собой нечто совершенно отличное от того, что понимали под этим словом древние мыслители. По современным представлениям, атом, будучи составной частью вещества, имеет весьма сложную структуру. Действительными же атомами в смысле древних являются, с точки зрения новейшей физики, элементарные частицы, например электроны, которые рассматриваются сегодня (может быть, временно) как последние неделимые составляющие атомов и, следовательно, материи.

Понятие атома было введено в современную науку химиками. Изучение химических свойств различных тел привело ученых-химиков к мысли, что все вещества подразделяются на два класса: к одному из них относятся сложные или составные вещества, которые путем соответствующих операций могут быть разложены на более простые вещества, к другому - более простые вещества, которые уже невозможно разложить на составные части. Эти простые вещества часто называют также элементами. В соответствии с этой теорией разложение сложных веществ на составляющие их элементы состоит в разрушении связей, объединяющих различные атомы в молекулы, и разделении веществ на составные части.

Атомная гипотеза оказалась очень плодотворной не только для объяснения основных химических явлений, но и для построения новых физических теорий. В самом деле, если все вещества действительно состоят из атомов, то многие их физические свойства, можно предсказать, исходя из представления об их атомной структуре. Например, хорошо известные свойства газа следовало бы объяснять, представляя газ как совокупность чрезвычайно большого числа атомов или молекул, находящихся в состоянии быстрого непрерывного движения. Давление газа на стенки содержащего его сосуда должно быть вызвано ударами атомов или молекул о стенки, температура его должна быть связана со средней скоростью движения частиц, которая возрастает с увеличением температуры газа. Основанная на подобных представлениях теория, получившая название кинетической теории газов, позволила вывести теоретически основные законы, которым подчиняются газы и которые уже были получены ранее экспериментальным путем. Более того, если предположение об атомном строении веществ соответствует действительности, то из этого следует, что для объяснения свойств твердых тел и жидкостей необходимо допустить, что в этих физических состояниях атомы или молекулы, из которых состоит вещество, должны находиться на гораздо меньших расстояниях друг от друга и быть гораздо сильнее связанными между собой, чем в газообразном состоянии. Большая величина сил взаимодействия между чрезвычайно близко расположенными атомами или молекулами, которую необходимо допустить, должна объяснить упругость, не сжимаемость и некоторые другие свойства, характеризующие твердые и жидкие тела. Возникшие и разработанные на этой основе теории встретили на своем пути целый ряд трудностей (большая часть которых была устранена с возникновением квантовой теории). Однако полученные в этой теории результаты были достаточно удовлетворительными, чтобы считать, что она развивается по правильному пути.

Несмотря на то, что гипотеза об атомном строении вещества для некоторых физических теорий оказалась весьма плодотворной, для окончательного ее подтверждения было необходимо произвести более или менее прямой эксперимент, подтверждающий атомную структуру материи .

Первым шагом к этому эксперименту стал опыт ботаника Роберта Брауна, который обнаружил беспорядочное движение взвешенных в жидкости частиц пыльцы. Но признание значения этого открытия для науки пришло более чем через полстолетия.

Для доказательства реальности молекул необходимо было определить их размер или массу. В 1865 году Лошмидт получил на газокинетической основе первую оценку размера молекул воздуха и числа молекул газа в 1 куб. см при нормальных условиях, и изложил полученные результаты в известной работе «Zur Grösse der Luftmoleküle» .

Семь лет спустя в 1872 г. Ван дер Ваальс вычислил постоянную Авогадро NA(количество молекул в образце, число граммов вещества в котором равно его молекулярному весу). Ван дер Ваальс нашел для числа N приблизительное значение 6,21023. Теория газа при высоких давлениях и вытекающие из нее

следствия вызвали всеобщее восхищение, но из-за большого числа предположений, лежавших в основе как теории, так и расчета числа NA, полученному значению числа Авогадро не особенно доверяли .

2.Открытие Роберта Броуна

Шотландский ботаник Роберт Броун еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Но имя ученого сейчас широко известно вовсе не из-за этих работ.

В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».

Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца - это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707-1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, - писал Броун, - который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы» .

Около 30 лет открытие Броуна не привлекало интереса физиков . Новому явлению не придавали большого значения, считая, что оно объясняется дрожанием препарата или же аналогично движению пылинок, которое наблюдается в атмосфере, когда на них падает луч света, и которое, как было известно, вызывается движением воздуха. Но если бы движения броуновских частиц вызывались какими-либо потоками в жидкости, то такие соседние частицы двигались бы согласованно, что противоречит данным наблюдений.

Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826-1896) предположил, что явление связано с колебательными движениями невидимых атомов. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Но заключения Винера были усложненными из-за введения понятия «атомов эфира» помимо атомов материи. В 1876 г. Уильям Рамзай, а в 1877 г. бельгийские священники-иезуиты Карбонель, Дельсо и Тирьон , и,наконец, в 1888 г. Гюи, ясно показали тепловую природу броуновского движения[ 5].

«При большой площади, - писали Дельсо и Карбонель, - удары молекул, являющиеся причиной давления, не вызывают никакого сотрясения подвешенного тела, потому что они в совокупности создают равномерное давление на тело во всех направлениях. Но если площадь недостаточна, чтобы скомпенсировать неравномерность, нужно учесть неравенство давлений и их непрерывное изменение от точки к точке. Закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину».

Если принять это объяснение, то явление теплового движения жидкостей, постулируемое кинетической теорией, можно сказать, представляется доказанным ad oculos (наглядно). Подобно тому как возможно, не различая волн в морской дали, тем объяснит качание лодки на горизонте волнами, точно так же, не видя движения молекул, можно судить о нем по движению взвешенных в жидкости частиц.

Это объяснение броуновского движения имеет значение не только как подтверждение кинетической теории, оно влечет за собой также важные теоретические последствия. По закону сохранения энергии изменение скорости взвешенной частицы должно сопровождаться изменением температуры в непосредственной окрестности этой частицы: эта температура возрастает, если скорость частицы уменьшается, и уменьшается, если скорость частицы увеличивается. Таким образом, термическое равновесие жидкости представляет собой статистическое равновесие.

Еще более существенное наблюдение сделал в 1888 г. Гюи: броуновское движение, строго говоря, не подчиняется второму началу термодинамики. В самом деле, когда взвешенная частица спонтанно поднимается в жидкости, то часть тепла окружающей ее среды спонтанно превращается в механическую работу, что запрещается вторым началом термодинамики. Наблюдения, однако, показали, что поднятие частицы происходит тем реже, чем тяжелее частица. Для частиц материи обычных размеров эта вероятность подобного поднятия практически равна нулю.

Таким образом, второй закон термодинамики становится законом вероятности, а не законом необходимости. Ранее никакой опыт не подтверждал этой статистической интерпретации. Достаточно было отрицать существование молекул, как это делала, например, школа энергетиков, процветавшая под руководством Маха и Оствальда, чтобы второе начало термодинамики стало законом необходимости. Но после открытия броуновского движения строгая интерпретация второго начала становилась уже невозможной: был реальный опыт, который показывал, что второй закон термодинамики постоянно нарушается в природе, что вечный двигатель второго рода не только не исключен, но постоянно осуществляется прямо на наших глазах.

Поэтому в конце прошлого века исследование броуновского движения приобрело огромное теоретическое значение и привлекло внимание многих физиков-теоретиков, и в частности Эйнштейна .

3.Теория броуновского движения

Начиная с самых первых физических исследований броуновского движения, делались попытки определить среднюю скорость взвешенных частиц. Однако полученные оценки содержали грубые ошибки, так как траектория частицы столь сложна, что ее невозможно проследить: средняя скорость сильно меняется по величине и направлению, не стремясь ни к какому определенному пределу с увеличением длительности времени наблюдения. Невозможно определить касательную к траектории в какой-либо точке, потому что траектория частицы напоминает не гладкую кривую, а график какой-то функции, не имеющей производной.

Горизонтальная проекция(в увеличенном виде) последовательных положений, занимаемых через каждые 30 сек тремя частицами камеди диаметром чуть больше 1 мк. (Les Atomes - Nature, Volume 91, Issue 2280, pp. 473 (1913)).

3.1Эйншнейн - первая теория броуновского движения

В 1902 г. после окончания Федерального института в Цюрихе Эйнштейн стал экспертом Швейцарского патентного бюро в Берне, в котором прослужил семь лет. Для него это были счастливые и продуктивные годы. Хотя жалованья едва хватало, работа в патентном бюро не была особенно обременительной и оставляла Эйнштейну достаточно сил и времени для теоретических исследований. Его первые работы были посвящены силам взаимодействия между молекулами и приложениям статистической термодинамики. Одна из них - «Новое определение размеров молекул» была принята в качестве докторской диссертации Цюрихским университетом. В том же году Эйнштейн опубликовал небольшую серию работ, которые не только показали его силу как физика-теоретика, но и изменили лицо всей физики.

Одна из этих работ была посвящена объяснению броуновского движения частиц, взвешенных в жидкости. Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с молекулами; кроме того, он предсказал, что наблюдение броуновского движения позволяет вычислить массу и число молекул, находящихся в данном объеме. Через несколько лет это было подтверждено Жаном Перреном. Эта работа Эйнштейна имела особое значение потому, что существование молекул, считавшихся не более чем удобной абстракцией, в то время еще ставилось под сомнение .

3.2Смолуховский- происхождение законов вероятности в физике

Эйнштейн, который примерно в те же годы и сам провел блестящие исследования броуновского движения, в некрологе памяти Смолуховского (1917) писал: Кинетической теории теплоты удалось добиться общего признания лишь в 1905-1906 гг., когда было доказано, что она может количественно объяснить давно открытое хаотическое движение взвешенных микроскопических частиц, т. е. броуновское движение. Смолуховский создал особенно изящную и наглядную теорию этого явления, исходя из кинетического закона равномерного распределения энергии... Познание сущности броуновского движения привело к внезапному исчезновению всяких сомнений в достоверности больцмановского понимания термодинамических законов [ 9].

Самое важное в работах Эйнштейна и Смолуховского по броуновскому движению состоит в установлении связи между законами движения видимых и доступных непосредственному измерению взвешенных в жидкости броуновских частиц и законами движения невидимых молекул. Оказалось, что к взвешенным броуновским частицам применимы газовые законы; их распределение в поле тяжести (барометрическая формула) такое же, как и распределение газов; их средняя кинетическая энергия равна средней кинетической энергии молекул жидкости, в которой они взвешены. Значит, в броуновском движении наблюдаемых частиц мы имеем наглядную и измеримую картину кинетического движения молекул. Все это раскрыло богатейшие возможности для разнообразных приемов экспериментальной проверки величин, характеризующих молекулярные системы, которые ранее выглядели лишь как гипотетические. Так результаты исследования броуновского движения дали множество способов измерений числа частиц в грамм-молекуле (число Авогадро) - через измерение вязкости газов, распределение частиц диффузии растворимых тел, явление oпалесценции, явление голубизны неба и т. д. Во всех случаях результаты оказались удивительно совпадающими, в пределах ошибок эксперимента. Жан Перрен в докладе Броуновское движение и молекулы, прочитанном во Французском физическом обществе 15 апреля 1909 г., говорил: Мне кажется невозможным, чтобы ум, свободный от предрассудков, не испытал сильнейшего впечатления при мысли о необычайном разнообразии явлений, которые с такой точностью стремятся дать одно и то же число, тогда как для каждого из этих явлений, не руководствуясь молекулярной теорией, можно было бы ожидать любой величины, заключенной между нулем и бесконечностью. Отныне уже будет трудно защищать разумными аргументами враждебное отношение молекулярным гипотезам. Значение исследований броуновского движения хорошо понимал и Смолуховский, который на съезде в Мюнстере в 1912 г. говорил: ...Здесь впервые серьезно принимается во внимание максвелловский закон распределения скоростей и вообще представление о теплоте как о процессе движения, в то время как раньше все это рассматривали обычно как своего рода поэтические сравнения .

Исследования броуновского движения и флуктуаций неизбежно выдвигают перед ученым методологические проблемы о роли случайности в физике, o чем писал Смолуховский в опубликованной уже после его смерти статье О понятии случайности и о происхождении законов вероятности в физике.

4.Доказательства реального существования атомов и молекул

1Жан Батист Перрен - решающие эксперименты.

В ходе исследований катодных лучей, испускаемых отрицательным электродом (катодом) в вакуумной трубке при электрическом разряде, Жан Батист Перрен в 1895 г. показал, что они являются потоком отрицательно заряженных частиц. Вскоре стало распространяться мнение, что эти отрицательные частицы, названные электронами, представляют собой составную часть атомов.

Атомная теория утверждала, что элементы составлены из дискретных частиц, называемых атомами, и что химические соединения состоят из молекул, частиц большего размера, содержащих два или более атомов. К концу XIX в. атомная теория получила широкое признание среди ученых, особенно среди химиков. Однако некоторые физики полагали, что атомы и молекулы - это не более чем фиктивные объекты, которые введены из соображения удобства и полезны при численной обработке результатов химических реакций. Австрийский физик и философ Эрнст Мах считал, что вопрос о первичном строении материи принципиально неразрешим и не должен быть предметом исследования ученых. Для сторонников атомизма подтверждение дискретности материи было одним из принципиальных вопросов, остававшихся нерешенными в физике.

Продолжая разрабатывать атомную теорию, Перрен выдвинул в 1901 г. гипотезу, что атом представляет собой миниатюрную Солнечную систему, но не смог это доказать.

В 1905 г. Альберт Эйнштейн опубликовал работу о броуновском движении, в которой были даны теоретические обоснования молекулярной гипотезы. Он дал определенные количественные предсказания, однако необходимые для их проверки эксперименты требовали настолько большой точности, что Эйнштейн сомневался в их осуществимости. С 1908 по 1913 г. Перрен (вначале не зная о работе Эйнштейна) выполнил тончайшие наблюдения над броуновским движением, которые подтвердили предсказания Эйнштейна.

Перрен понял, что если движение взвешенных частиц вызывается столкновениями с молекулами, то, основываясь на хорошо известных газовых законах, можно предсказать их средние смещения за определенный промежуток времени, если знать их размер, плотность и некоторые характеристики жидкости (например, температуру и плотность). Требовалось только правильно согласовать эти предсказания с измерениями, и тогда появилось бы веское подтверждение существования молекул. Однако получить частицы нужных размеров и однородности было не так просто. После многих месяцев кропотливого центрифугирования Перрену удалось выделить несколько десятых грамма однородных частиц гуммигута (желтоватого вещества, получаемого из млечного сока растений). После измерения характеристик броуновского движения этих частиц результаты оказались вполне соответствующими молекулярной теории.

Распределение конечных точек горизонтальных смещений частицы камеди, перенесенных параллельно самим себе так, чтобы начала всех смещений находились в центре окружности, опубликованное в работе Перрена Броуновское движение и реальность молекул.

Перрен также изучал седиментацию, или оседание, мельчайших взвешенных частиц. Если молекулярная теория верна, рассуждал он, частицы, размеры которых меньше определенного, вовсе не будут опускаться на дно сосуда: направленная вверх компонента импульса, полученного в результате соударений с молекулами, будет постоянно противодействовать направленной вниз силе тяжести. Если суспензия не подвергается возмущениям, то в конце концов установится седиментационное равновесие, после чего концентрация частиц на различной глубине не будет изменяться. Если свойства суспензии известны, то можно предсказать равновесное распределение по вертикали.

Перрен провел несколько тысяч наблюдений, весьма изощренно и остроумно пользуясь микроскопической техникой и подсчитывая число частиц на разной глубине в одной капле жидкости с шагом по глубине всего в двенадцать сотых миллиметра. Он обнаружил, что концентрация частиц в жидкости экспоненциально убывает с уменьшением глубины, причем числовые характеристики столь хорошо согласовались с предсказаниями молекулярной теории, что результаты его опытов были широко признаны как решающее подтверждение существования молекул. Позже он придумал способы измерения не только линейных смещений частиц в броуновском движении, но и их вращения. Исследования Перрена позволили ему вычислить размеры молекул и число Авогадро, т.е. число молекул в одном моле (количестве вещества, масса которого, выраженная в граммах, численно равна молекулярному весу этого вещества). Он проверил полученное им значение числа Авогадро с помощью пяти различных типов наблюдений и нашел, что она удовлетворяет им всем с учетом минимальной экспериментальной ошибки. (Принятое ныне значение этого числа составляет примерно 6,02·1023; Перрен получил величину на 6% более высокую.) К 1913 г., когда он суммировал уже многочисленные к тому времени свидетельства дискретной природы материи в своей книге Les Atomes - «Атомы» реальность существования как атомов, так и молекул была признана почти повсеместно.

В 1926 г. Перрен получил Нобелевскую премию по физике «за работу по дискретной природе материи и в особенности за открытие седиментационного равновесия».

4.2Теодор Сведберг - определение размеров белковой молекулы

Шведский химик Теодор Сведберг всего через 3 года после поступления в Упсальский университет получает докторскую степень за диссертацию о коллоидных системах.

Коллоидные системы представляют собой смесь, в которой мельчайшие частицы одного вещества рассеяны в другом веществе. Коллоидные частицы крупнее, чем частицы истинных растворов, но не настолько, чтобы их можно было рассматривать под микроскопом или чтобы они выпадали в осадок под действием силы тяжести. Их размеры варьируются от 5 нанометров до 200 нанометров. Примерами коллоидных систем являются «индийские чернила» (частицы угля в воде), дым (твердые частицы в воздухе) и молочный жир (крошечные шарики жира в водяном растворе). В докторской диссертации Сведберг описал новый способ применения колебательных электрических разрядов между металлическими электродами, расположенными в жидкости, с целью получения относительно чистых коллоидных растворов металлов. Для ранее принятого способа с применением постоянного тока была характерна высокая степень загрязненности.

В 1912 г. Сведберг стал первым в Упсальском университете преподавателем физической химии и оставался на этой работе в течение 36 лет. Проведенное им тщательное изучение диффузии и броуновского движения коллоидных частиц (беспорядочного движения мельчайших частиц, взвешенных в жидкости) стало еще одним свидетельством в пользу осуществленного в 1908 г. Жаном Перреном экспериментального подтверждения теоретической работы Альберта Эйнштейна и Мариана Смолуховского, установивших наличие молекул в растворе. Перрен доказал, что размеры крупных коллоидных частиц могут устанавливаться путем измерения скорости их выпадения в осадок. Большинство коллоидных частиц, однако, осаждается в своей среде так медленно, что этот способ представлялся непрактичным.

Для определения размеров частиц в коллоидных растворах Сведберг применил сконструированный Рихардом Зигмонди ультрамикроскоп. Он полагал, что осаждение коллоидных частиц ускорилось бы в условиях более сильного гравитационного поля, создаваемого скоростной центрифугой. Во время своего пребывания в Висконсинском университете в 1923 г., где он был в течение 8 месяцев приглашенным профессором, Сведберг приступил к созданию оптической центрифуги, в которой осаждение частиц фиксировалось бы посредством фотографирования. Поскольку частицы двигались, не только осаждаясь, но и под действием конвенционных токов, Сведберг с помощью этого метода не мог установить размеры частиц. Он знал, что высокая удельная теплопроводность водорода могла бы помочь устранить температурные различия, а следовательно, и конвекционные токи. Сконструировав клинообразную кювету и поместив вращающуюся кювету в атмосферу водорода, Сведберг в 1924 г., уже вернувшись в Швецию, вместе со своим коллегой Германом Ринде добился осаждения без конвекции. В январе 1926 г. ученый испытал новую модель ультрацентрифуги с масляными роторами, в которой добился 40 100 оборотов в минуту. При такой скорости на осаждающуюся систему действовала сила в 50 000 раз превосходящяя силу тяжести.

В 1926 г. Сведбергу была присуждена Нобелевская премия по химии «за работы в области дисперсных систем». В своей вступительной речи от имени Шведской королевской академии наук X. Г. Седербаум сказал: «Движение частиц, взвешенных в жидкости... наглядно свидетельствует о реальном существовании молекул, а следовательно, и атомов - факт тем более знаменательный, что еще совсем недавно влиятельная школа ученых объявила эти материальные частицы плодом воображения».

5.Современная наука о броуновском движении

Фундаментальная проблема соотношения обратимости уравнений классической и квантовой механики с необратимостью процессов термодинамики тесно связана с понятием хаоса и применимостью вероятностного описания . Из множества решений уравнений динамики реализуются только устойчивые к взаимодействию с окружением физической системы, таким образом необратимость является свойством открытых систем. Любая система может считаться замкнутой лишь приближенно(т.к. всегда существуют внешние шумы), поэтому необратимость обладает универсальным характером .

В настоящее время термин броуновское движение имеет очень широкий смысл и теория броуновского движения является разделом физики открытых систем связанным со стохастическими процессами, процессами самоорганизации и динамическим хаосом .

В статистической теории неравновесных процессов атомы, как микроскопические структурные единицы, используются лишь на стадии построения модели рассматриваемой макроскопической системы. Далее применяются диссипативные нелинейные уравнения механики сплошных сред для детерминированных функций. Различают три уровня описания - кинетический, гидродинамический и химической кинетики. Отдельно можно выделить стохастические уравнения (например, уравнения теории турбулентности) для случайных функций . Уточнение теории возможно за счет учета флуктуаций, что впервые сделал еще Ланжевен при рассмотрении линейного диссипативного динамического уравнения движения броуновской частицы. В различных системах роль броуновских частиц могут играть функции распределения, гидродинамические функции и концентрации.

Учет флуктуаций необходим при исследовании молекулярного рассеяния света, неравновесных фазовых переходов, последовательности которых формируют процессы самоорганизации. Применения нелинейной теории броуновского движения чрезвычайно обширны: от экологии и финансов до методов контролируемого перемещения наночастиц - броуновские моторы . Броуновские моторы связаны с диссипативной динамикой в неравновесных квантовых системах .

Развитие математического описания стохастических процессов стимулировало прогресс в различных областях, привело к появлению современной формулировки квантовой механики на основе интегралов по траекториям и новых направлений исследований, таких, как квантовый хаос и квантовый броуновский шум . Экспериментальный прогресс в области физики высоких энергий и астрофизики стимулировал интерес к процессам релятивистской диффузии и построению релятивистской статистической механики, в настоящее время многие вопросы еще остаются открытыми .

Со времени своего открытия броуновское движение превратилось из объекта частного научного любопытства в ключевое понятие современной науки..

Литература

1.Луи де Бройль. Революция в физике (Новая физика и кванты). М: Атомиздат, 1965.

2.J. J. Loschmidt. Zur Grösse der Luftmoleküle. Sitzungsberichte der

kaiserlichen Akademie der Wissenschaften Wien, B. 52, Abt. II, S. 395-413 (1866).

3.М. Льоцци. История физики - М: Мир, 1970.

4.Peter W. van der Pas. Discovery of the Brownian motion. Scientiarum Historia. V. 13, P. 27-35 (1971)

5.Дж. Кларк. Иллюстрированная хроника открытий и изобретений с древнейших времен до наших дней: Наука и технология: Люди, даты, события (пер. с англ.) М: Астрель, 2002 .

6.A. Einstein. Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik (ser. 4), V. 19, P. 289-306 (1906)

.A. Einstein. Zur Theorie der Brownschen Bewegung. Annalen der Physik (ser. 4), V. 19, P. 371-381 (1906)

8.Лауреаты Нобелевской премии: Энциклопедия: Пер. с англ.- М.: Прогресс, 1992.

9.А. Эйнштейн. Собрание научных трудов, т. IV, Мариан Смолуховский. М: Наука, 1937.

10.С. Г. Суворов. К 50-летию со дня смерти Марианна Смолуховского. УФН Т. 93, С. 719-723 (1976)

11.М. Смолуховский. О понятии случайности и происхождении законов вероятностей в физике. УФН Вып. 5 , С. 329-349 (1927)

.J. Perrin. Brownian Movement and Molecular Reality.Taylor & Francis, London, 1910.

.J. Perrin. Les Atomes. Nature, V. 91, Is. 2280, P. 473 (1913)

14.А. Б. Кадомцев. Динамика и информация. М: Редакция журнала УФН, 1997.

15.А. Ю. Лоскутов. Динамический хаос. Системы классической механики. УФН т. 172, с. 989-1115 (2007)

.С. Н. Гордиенко. Необратимость и вероятностное описание динамики классических частиц. УФН т. 169, с. 653-672 (1999)

17.M. M. Robert. Brownian Motion: Flucuations, Dynamics, and Applications. International Series of Monographs on Physics, vol. 112 (Oxford University Press, 2002)

18.Ю. Л. Климонтович. Турбулентное движение и структура хаоса. М: Наука, 1990.

19.Ю. Л. Климонтович. Нелинейное броуновское движение. УФН Т. 164, вып. 8. с. 812-845.(1994)

20.J. A. Freund, Th. Pöschel. Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics, V. 557 (2000)

21.C. Godrèche1, S. N. Majumdar, G. Schehr. Longest Excursion of Stochastic Processes in Nonequilibrium Systems. Phys. Rev. Lett. v.102, p.240602 (2009)

.M. Lax. Fluctuations and Coherence Phenomena in Classical and Quantum Optics. New York: Gordon, 1968.

.H. Haken. Advanced Synergetics. Heidelberg: Springer-Verlag, 1983.

.J. Dunkel, P. Hänggi. Relativistic Brownian motion. Physics Reports, V. 471, Is. 1, P. 1-73.(2009)

25.P.Hänggi, F. Marchesoni. Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, V. 81, Is. 1, P. 387-442 (2009)

.P. Reimann. Brownian motors: noisy transport far from equilibrium. Physics Reports, V. 361, Is. 2-4, P. 57-265 (2002)

27.P. Hänggi, G.-L. Ingold. Fundamental aspects of quantum Brownian motion. Chaos, V. 15, Is. 2, P. 026105-026105 (2005)

.E. Frey , K. Kroy. Brownian motion: a paradigm of soft matter and biological physics. Annalen der Physik. V. 14, P. 20 - 50 (2005)

Похожие работы на - Теория броуновского движения и экспериментальное доказательство реального существования атомов и молекул


Основные положения молекулярно-кинетической теории.

1). Любое вещество имеет дискретное (прерывистое) строение. Оно состоит из мельчайших частиц - молекул и атомов, разделенных между собой промежутками. Молекулы являются наименьшими частицами, обладающими химическими свойствами данного вещества. Атомы являются наименьшими частицами, обладающими свойствами химических элементов, входящих в состав данного вещества.

2). Молекулы находятся в состоянии непрерывного хаотического движения, называемого тепловым. При нагревании вещества скорость теплового движения и кинетическая энергия его частиц увеличиваются, а при охлаждении - уменьшаются. Степень нагретости тела характеризуется его температурой, которая является мерой средней кинетической энергии поступательного движения молекул этого тела.

3). Между молекулами в процессе их взаимодействия возникают силы притяжения и отталкивания.

Экспериментальное обоснование молекулярно-кинетической теории

Наличие у веществ проницаемости, сжимаемости и растворимости свидетельствует о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц. С помощью современных методов исследования (электронный и ионный микроскопы) удалось получить изображения наиболее крупных молекул.

Наблюдения броуновского движения и диффузии частиц показали, что молекулы находятся в непрерывном движении.

Наличие прочности и упругости тел, смачиваемости, прилипания, поверхностного натяжения в жидкостях и т. д. - все это доказывает существование сил взаимодействия между молекулами.

Броуновское движение.

В 1827 г. английский ботаник Броун, наблюдая в микроскоп взвесь цветочной пыльцы в воде, обнаружил, что крупинки пыльцы непрерывно хаотически движутся. Беспорядочное движение взвешенных в жидкости очень маленьких частиц твердого тела и получило название броуновского движения. Было установлено, что броуновское движение происходит неограниченно долго. Интенсивность движения взвешенных в жидкости частиц не зависит от вещества этих частиц, а зависит от их размеров. Крупные частицы остаются неподвижными. Интенсивность броуновского движения увеличивается при повышении температуры жидкости и уменьшается при ее понижении. Взвешенные в жидкости частицы движутся под действием молекул жидкости, которые сталкиваются с ними. Молекулы движутся хаотично, поэтому силы, с которыми они действуют на взвешенные частицы, непрерывно изменяются по модулю и направлению. Это и приводит к беспорядочному движению взвешенных частиц. Таким образом, броуновское движение наглядно подтверждает существование моле­кул и хаотический характер их теплового движения. (Количественную теорию броуновского движения разработал в 1905 г. Эйнштейн.)

Диффузией называют явление самопроизвольного взаимного проникновения молекул граничащих между собой веществ в межмолекулярные промежутки друг друга. (Диффузию, происходящую через полупроницаемые перегородки, называют осмосом.) Примером диффузии в газах является распространение запахов. В жидкостях наглядным проявлением диффузии является перемешивание против действия силы тяжести жидкостей разной плотности (при этом молекулы более тяжелой жидкости поднимаются вверх, а более легкой - опускаются вниз). Диффузия происходит и в твердых телах. Это доказывает та­кой опыт: две отполированные плоские пластинки из золота и свинца, положенные друг на друга, выдерживались при комнатной температуре в течение 5 лет. За это время пластинки срослись, образовав единое целое, причем молекулы золота проникли в свинец, а молекулы свинца - в золото на глубину до 1 см. 1 Скорость диффузии зависит от агрегатного состояния вещества и температуры. С повышением температуры скорость диффузии возрастает, а с понижением - уменьшается.

Размеры и масса молекул

Размер молекулы является величиной условной. Его оценивают следующим образом. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния. Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы и обозначают о (при этом условно считают, что молекулы имеют сферическую форму). За исключением молекул органических веществ, содержащих очень большое число атомов, большинство молекул по порядку величины имеют диаметр 10 -10 м и массу 10 -26 кг.

Относительная молекулярная масса

Поскольку массы атомов и молекул чрезвычайно малы, при расчетах обычно используют не абсолютные, а относительные значения масс, получаемые путем сравнения масс атомов и молекул с атомной единицей массы, в качестве которой выбрана 1/12 часть массы атома углерода (т. е. пользуются углеродной шкалой атомных масс). Относительной молекулярной (или атомной ) массой М r (или А r ) вещества называют величину, равную отношению массы молекулы (или атома) этого вещества к 1/12 массы атома углерода 12 С. Относительная молекулярная (атомная) масса является величиной, не имеющей размерности. Относительная атомная масса каждого химического элемента указана в таблице Менделеева. Если вещество состоит из молекул, образованных из атомов различных химических элементов, относительная молекулярная масса данного вещества равна сумме относительных атомных масс элементов, входящих в состав данного вещества.

Количество вещества

Количество вещества, содержащегося в теле, определяется числом молекул в этом теле (или числом атомов). Поскольку число молекул в макроскопических телах очень велико, для определения количества вещества в теле сравнивают число молекул в этом теле с числом атомов в 0,012 кг углерода. Иными словами, количеством вещества v называют величину, равную отношению числа молекул (или атомов) N в данном теле к числу атомов N A в 12 г углерода, т. е.

v = N/N A . Количество вещества выражают в молях. Моль равен количеству вещества системы, содержащей столько же структурных элементов (атомов, молекул, ионов), сколько содержится атомов в углероде-12 массой 0,012 кг.

Постоянная Авогадро. Молярная масса

Согласно определению понятия моль, в 1 моль любого вещества содержится одинаковое число молекул или атомов. Это число N A , равное числу атомов в 0,012 кг (т. е. в 1 моль) углерода, называют постоянной Авогадро. Молярной массой М какого-либо вещества называют массу 1 моль этого вещества . Молярную массу вещества выражают в килограммах на моль.

Количество вещества можно найти как

Массу одной молекулы можно найти как или учитывая что относительная молекулярная масса числена равна массе одной молекулы выраженной в а.е.м. (1 а.е.м. = 1,66×10 -27 кг).