Аурум элемент таблицы. Золото – химический элемент: полная характеристика. Значение в искусстве

золото в химической таблице менделеева и получил лучший ответ

Ответ от Анастасия[гуру]
Зо́лото - 79-й элемент периодической системы элементов, благородный металл жёлтого цвета.
Золото - самый инертный металл, стоящий в ряду напряжений правее всех других металлов, при нормальных условиях оно не реагирует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от металлов обычных, легко разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что поколебало уверенность в его инертности.
Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:
2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN− + 2H2O + O2 → 4− + 4 OH−
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °С с образованием хлорида золота (III), то в водном растворе (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl2 + 2Cl− → 2−
Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3.
Со фтором золото реагирует в интервале температур 300−400°C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.
Золото также растворяется в ртути, фактически образуя легкоплавкий сплав (амальгаму) .
Золото / Aurum (Au),Gold,Or
Атомный номер 79
Внешний вид Мягкий вязкий
ковкий жёлтый
металл
Свойства атома
Атомная масса
(молярная масса) 196,96654 а. е. м. (г/моль)
Радиус атома 146 пм
Энергия ионизации
(первый электрон) 889,3 (9,22) кДж/моль (эВ)
Электронная конфигурация 4f14 5d10 6s

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: золото в химической таблице менделеева

Золото – благородный металл насыщенного желтого цвета с характерным блеском. В периодической таблице Менделеева занимает 79 место. В химии обозначается как Au (Aurum). О всех языках мира название "золото" переводится как "желтый". Латинское же слово aurum относит нас к богине утренней зари Авроре. Люди добывают золото с незапамятных времен. Название этого металла неоднократно встречается в Библии, в том числе и в перечислении даров, принесенных волхвами. Первая монета из золота появилась в Древней Лидии в 560 году до н.э.


Характеристики и виды золота Золото в чистом виде – очень мягкий металл. Его легко можно поцарапать ногтем, поэтому для придания прочности при изготовлении украшений, монет в золото добавляют серебро, медь и платину. У золота высокий коэффициент плотности. Именно поэтому его легко добывать. По своей тяжести золото стоит на 6 месте, уступая лишь платине, осмию, иридию, рению и плутонию. Золото – весьма пластично. Можно проковать этот металл в листы, толщиной всего в ~0,1 мкм – так называемое "сусальное золото". Золото прекрасно проводит электричество и тепло. Этот металл не окисляется при нормальных условиях, не боится кислоты. Растворяется только в "царской водке" и растворах цианистого калия или натрия. Самая распространенная классификация золота – по цвету. Причем цвет золота зависит от лигатуры (добавленных металлов).


Традиционно желтое золото в ювелирных украшениях – это сплав золота и серебра или меди. Если желтый цвет металла с красноватым оттенком, значит, добавили больше меди. Лимонно-желтое золото, характерное для украшений из Европы, содержит больше серебра. Белое золото получает при сплаве этого металла с платиной, никелем или палладием. Причем наличие никеля в сплаве делает золото сильным аллергеном. Червонное золото издавна известно на Руси. Его получают путем сплавления с медью. А для блеска добавляют немного серебра. Существует также синее, зеленое, фиолетовое и даже черное золото.


В зависимости от состава лигатуры определяют пробу золота. В России существует своя шкала проб: 375 проба – 38% золота плюс медь и серебро. Такое золото быстро тускнеет, но его легко полировать. 500 проба – 50,5% золота плюс медь и серебро. Это золото плохо плавится, со временем теряет блеск. 585 проба – 59% золота плюс медь, никель, палладий и серебро. Проценты добавленных металлов могут различаться. 750 проба – 75,5% золота плюс те же ингредиенты, что в золоте 585 пробы. Это золото прекрасно сохраняет блеск, имеет богатую цветовую палитру. 999 проба – чистое золото, без примесей. Изделия из золота 999 пробы – самые дорогие. В других странах существует несколько другая шкала определения лигатуры.


Месторождения и добыча Золото – самый древний металл. Люди стали добывать золото практически одновременно с медью, еще в эпоху неолита. Но при этом, золото – довольно редкий металл. Так, по приблизительным подсчетам за всю историю человечества было добыто 165 тысяч тонн золота (по состоянию на 2009 год). Если отлить все это золото в один слиток, получится куб со стороной в 20 метров. Для сравнения, такой же объем железа в мире добывается за 45 минут. Самые богатые залежи золота – в ЮАР. Далее следует Китай, США, Австралия и Перу. Россия в этом списке только на 6 месте. Это обусловлено и тем, что в свое время Россия продала Аляску Америке. Цена (в перерасчете на нынешние тарифы) составила 100 млн. долларов. А спустя несколько лет на Аляске обнаружили богатейшие россыпи золота. Началась "золотая лихорадка", обогатившая экономику Америки на миллиарды долларов.


Самые богатые залежи золота в Росси обнаружены на Чукотке, в Красноярском крае и в Амурской области. Метод добычи золота зависит от видов залежей. Для добычи самородков используют метод промывки. На месторождениях с рассеянным золотом применяют метод амальгамации. Если в руде, содержащей золото, содержится большое количество примесей, то золото добывают методом цианирования или регенерации. При этом используют многоэтапные сложные технологии. Эту работу проводят на аффинажных заводах.


Применение золота Статистика утверждает, что 90 процентов добытого золота хранится либо в банках как золотой запас страны, либо у частных лиц в виде ювелирных украшений, монет и прочих предметах. В промышленности используют лишь 10% добытого золота. В электротехнике золотом покрывают поверхность контактов, разъемов, а также в качестве припоя. Золочение металлов применяют для защиты их от коррозии. Золото содержится в оболочке нейтронной бомбы. В пищевой промышленности золото зарегистрировано как пищевая добавка Е175.


Золото используют для литья стекол. Тонкая золотая пленка в стекле защищает от инфракрасного излучения. А пропущенный через такую прослойку ток придает стеклу противотуманные свойства. Так изготавливают стекла для судов, кораблей, паровозов, самолетов. В медицине для изготовления коронок и зубных протезов, для изготовления лекарств. В косметологии – для омоложения кожи. Но больше всего золото используют для изготовления ювелирных украшений

ЗОЛОТО (химический элемент) ЗОЛОТО (химический элемент)

ЗО́ЛОТО (лат. Aurum) , Au (читается «аурум»), химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197 Au. Конфигурация внешней и предвнешней электронных оболочек 5s 2 p 6 d 10 6s 1 . Расположено в IВ группе и 6-м периоде периодической системы, относится к благородным металлам. Степени окисления 0, +1, +3, +5 (валентности от I, III, V).
Металлический радиус атома золота 0,137 нм, радиус иона Au + - 0,151 нм для координационного числа 6, иона Au 3+ - 0,084 нм и 0,099 нм для координационных чисел 4 и 6. Энергии ионизации Au 0 - Au + - Au 2+ - Au 3+ соответственно равны 9,23, 20,5 и 30,47 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,4.
Нахождение в природе
Содержание в земной коре 4,3·10 –7 % по массе, в воде морей и океанов менее 5·10 –6 % мг/л. Относится к рассеянным элементам. Известно более 20 минералов, из которых главный - самородное золото (электрум, медистое, палладиевое, висмутовое золото). Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Химические соединения золота в природе редки, в основном это теллуриды - калеверит AuTe 2 , креннерит (Au,Ag)Te 2 и другие. Золото может присутствовать в виде примеси в различных сульфидных минералах: пирите (см. ПИРИТ) , халькопирите (см. ХАЛЬКОПИРИТ) , сфалерите (см. СФАЛЕРИТ) и других.
Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде.
История открытия
Золото было известно человечеству с древнейших времен. Возможно, оно явилось первым металлом, с которым познакомился человек. Имеются данные о добыче золота и изготовлении изделий из него в Древнем Египте (4100-3900 годы до н. э.), Индии и Индокитае (2000-1500 годы до н. э.), где из него изготавливали деньги, дорогие украшения, произведений культа и искусства.
Получение
Источники золота при его промышленном получении - руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав - амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na + Zn = Na 2 + NO +H 2 O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO 4 .
Физические и химические свойства
Золото - желтый металл с кубической гранецентрированной решеткой (a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм 3 . Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м 2 . Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом (см. КИСЛОРОД) , азотом (см. АЗОТ) , водородом (см. ВОДОРОД) , фосфором (см. ФОСФОР) , сурьмой (см. СУРЬМА) и углеродом (см. УГЛЕРОД) непосредственно не взаимодействует. Антимонид AuSb 2 и фосфид золота Au 2 P 3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
2Au + 6H 2 SeO 4 = Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl 2 + 2HCl = 2H
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl 4 ·3H 2 O.
С галогенами (см. ГАЛОГЕНЫ) без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl 2 = 2AuCl 3 ,
2Au + 3XeF 2 = 2AuF 3 + 3Xe
В воде растворимы только AuCl 3 и AuBr 3 , состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O 2 + – получены фториды золота AuF 5 и AuF 7 . Их также можно получить, окисляя золото или его трифторид с помощью KrF 2 и XeF 6 .
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl 2
или диспропорционируют:
3AuBr = AuBr 3 + 2Au.
Соединения золота неустойчивы и в водных растворах гидролизуются, легко восстанавливаясь до металла.
Гидроксид золота (III) Au(OH) 3 образуется при добавлении щелочи или Mg(OH) 2 к раствору H:
H + 2Mg(OH) 2 = Au(OH) 3 Ї + 2MgCl 2 + H 2 O
При нагревании Au(OH) 3 легко дегидратируется, образуя оксид золота (III):
2Au(OH) 3 = Au 2 O 3 + 3H 2 O
Гидроксид золота (III) проявляет амфотерные свойства, реагируя с растворами кислот и щелочей:
Au(OH) 3 + 4HCl = H + 3H 2 O,
Au(OH) 3 + NaOH = Na
Другие кислородные соединения золота неустойчивы и легко образуют взрывчатые смеси. Соединение оксида золота (III) с аммиаком Au 2 O 3 ·4NH 3 - «гремучее золото», взрывается при нагревании.
При восстановлении золота из разбавленных растворов его солей, а также при электрическом распылении золота в воде образуется стойкий коллоидный раствор золота:
2AuCl 3 + 3SnCl 2 = 3SnCl 4 +2Au
Окраска коллоидных растворов золота зависит от степени дисперсности частиц золота, а интенсивность от их концентрации. Частицы золота в растворе всегда отрицательно заряжены.
Применение
Золото и его сплавы используют для изготовления ювелирных изделий, монет, медалей, зубных протезов, деталей химической аппаратуры, электрических контактов и проводов, изделий микроэлектроники, для плакирования труб в химической промышленности, в производстве припоев, катализаторов, часов, для окрашивания стекол, изготовления перьев для авторучек, нанесения покрытий на металлические поверхности. Обычно золото используют в сплаве с серебром или палладием (белое золото; также называют сплав золота с платиной и другими металлами). Содержание золота в сплаве обозначают государственным клеймом. Золото 583 пробы является сплавом с 58,3% золота по массе. См также Золото (в экономике) (см. ЗОЛОТО (в экономике)) .
Физиологическое действие
Некоторые соединения золота токсичны, накапливаются в почках, печени, селезенке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении.

Энциклопедический словарь . 2009 .

Смотреть что такое "ЗОЛОТО (химический элемент)" в других словарях:

    Золото - получить на Академике актуальный промокод на скидку ЛОкситан или выгодно золото купить с дисконтом на распродаже в ЛОкситан

    Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия

    ПАЛЛАДИЙ (лат. Palladium, по названию одного из крупнейших астероидов Паллада), Pd (читается «палладий»), химический элемент с атомным номером 46, атомная масса 106,42. Природный палладий состоит из шести стабильных изотопов 102Pd (1,00%), 104Pd… … Энциклопедический словарь

    - (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… …

    - (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Золото (лат. aurum), au, химический элемент 1 группы периодической системы Менделеева; атомный номер 79, атомная масса 196,9665; тяжёлый металл жёлтого цвета. Состоит из одного устойчивого изотопа 197 au.

Историческая справка. З. было первым металлом, известным человеку. Изделия из З. найдены в культурных слоях эпохи неолита (5-4-е тыс. до н. э.). В древних государствах - Египте, Месопотамии, Индии, Китае добыча З., изготовление украшений и др. предметов из него существовали за 3-2 тыс. до н. э. З. часто упоминается в Библии, «Илиаде», «Одиссее» и др. памятниках древней литературы. Алхимики называли З. «царём металлов» и обозначали его символом Солнца; открытие способов превращения неблагородных металлов в З. было главной целью алхимии.

Распространённость в природе. Среднее содержание З. в литосфере составляет 4,3 · 10 -7 % по массе. В магме и магматических породах З. рассеяно, но из горячих вод в земной коре образуются гидротермальные месторождения З., имеющие важное промышленное значение (кварцевые золотоносные жилы и др.). В рудах З. в основном находится в свободном (самородном) состоянии и лишь очень редко образует минералы с селеном, теллуром, сурьмой, висмутом. Пирит и др. сульфиды часто содержат примесь З., которое извлекают при переработке медных, полиметаллических и др. руд.

В биосфере З. мигрирует в комплексе с органическими соединениями и механическим путём в речных взвесях. 1 л морской и речной воды содержит около 4 · 10 -9 г З. На участках золоторудных месторождений подземные воды содержат З. приблизительно 10 -6 г/л. Оно мигрирует в почвах и оттуда попадает в растения; некоторые из них концентрируют З., например хвощи, кукуруза. Разрушение эндогенных месторождений З. приводит к образованию россыпей З., имеющих промышленное значение. З. добывается в 41 стране; его основные запасы сосредоточены в СССР, ЮАР и Канаде.

Физические и химические свойства. З. - мягкий, очень пластичный, тягучий металл (может быть проковано в листки толщиной до 8 · 10 -5 мм, протянуто в проволоку, 2 км которой весят 1 г ), хорошо проводит тепло и электричество, весьма стойко против химических воздействий. Кристаллическая решётка З. гранецентрированная кубическая, а = 4,704 a . Атомный радиус 1,44 a , ионный радиус au 1+ 1,37 a . Плотность (при 20°С) 19,32 г/см 3 , t пл 1064,43°С, t kип 2947°С; термический коэффициент линейного расширения 14,2 · 10 -6 (0-100°С); удельная теплопроводность 311,48 вт /(м · К) ; удельная теплоёмкость 132,3 дж /(кг · К) (при 0°-100°С); удельное электросопротивление 2,25 · 10 -8 ом (м (2,25 · 10 -6 ом (см ) (при 20°С); температурный коэффициент электросопротивления 0,00396 (0-100°С). Модуль упругости 79 · 103 Мн/м 2 (79 · 10 2 кгс/мм 2 ), для отожжённого З. предел прочности при растяжении 100-140 Мн/м 2 (10-14 кгс/мм 2 ), относительное удлинение 30-50%, сужение площади поперечного сечения 90%. После пластической деформации на холоду предел прочности повышается до 270-340 Мн/м 2 (27-34 кгс/мм 2 ) . Твёрдость по Бринеллю 180 Мн/м 2 (18 кгс/мм 2 ) (для З. отожжённого около 400 °С).

Конфигурация внешних электронов атома З. 5d 10 6s 1 . В соединениях З. имеет валентности 1 и 3 (известны комплексные соединения, в которых З. 2-валентно). С неметаллами (кроме галогенов) З. не взаимодействует. С галогенами З. образует галогениды, например 2au + 3cl 2 =2auc13. В смеси соляной и азотной кислот З. растворяется, образуя золотохлористоводородную кислоту h . В растворах цианида натрия nacn (или калия kcn) при одновременном доступе кислорода З. превращается в цианоаурат (i) натрия 2na . Эта реакция, открытая в 1843 П. Р. Багратионом, получила практическое применение только в конце 19 в. Для З. характерна лёгкая восстановимость его из соединений до металла и способность к комплексообразованию. Существование закиси З., т. е. оксида З. (i) au 2 o, сомнительно. Хлорид З. (i) aucl получается при нагревании хлорида З. (iii): auc1 3 = aucl + c1 2 .

Хлорид З. (iii) auc1 3 получается действием хлора на порошок или тонкие листочки З. при 200 °С. Красные иглы auc1 3 дают с водой коричнево-красный раствор комплексной кислоты: auc1 3 +Н 2 О=Н 2 .

При осаждении раствора auc1 3 едкой щёлочью выпадает амфотерная жёлто-коричневая гидроокись З.(iii) au (oh) 3 c преобладанием кислотных свойств; поэтому её называют золотой кислотой, а её соли - ауратами (iii). При нагревании гидроокись З. (iii) превращается в окись З. au 2 o 3 , которая выше 220° разлагается по реакции:

2au 2 o 3 = 4au + 3o 2 .

При восстановлении солей З. хлоридом олова (ii) 2auc1 3 + 3sncl 2 = 3sncl 4 + 2au

образуется весьма стойкий пурпуровый коллоидный раствор З. (кассиев пурпур); это используется в анализе для обнаружения З. Количественное определение З. основано на его осаждении из водных растворов восстановителями (feso 4 , h 2 so 3 , h 2 c 2 o 4 и др.) или на применении пробирного анализа.

Получение З. и его аффинаж. Из россыпных месторождений З. можно извлечь отмучиванием, основанным на большой разности плотностей З. и пустой породы. Этот способ, применявшийся уже в глубокой древности, сопряжён с большими потерями. Он уступил место амальгамации (известной уже в 1 в. до н. э. и применявшейся в Америке начиная с 16 в.) и цианированию, получившему широкое распространение в Америке, Африке и Австралии в 1890-х гг. В конце 19 - начале 20 вв. основным источником З. стали коренные месторождения. Золотоносную породу сначала подвергают дроблению и обогащению. Из полученного концентрата извлекают З. раствором цианида калия или натрия. Из раствора комплексного цианида осаждают З. цинком; при этом выпадают и примеси. Для очистки (аффинажа) З. электролизом (способ Э. Вольвилла, 1896) аноды, отлитые из нечистого З., подвешивают в ванне, содержащей солянокислый раствор auc1 3 , катодом служит лист чистого З. При прохождении тока примеси выпадают в осадок (анодный ил, шлам), а на катоде отлагается З. чистотой не менее 99,99%.

Применение . З. в условиях товарного производства выполняет функцию денег . В технике З. применяют в виде сплавов с др. металлами, что повышает прочность и твёрдость З. и позволяет экономить его. Содержание З. в сплавах, применяемых для изготовления ювелирных изделий, монет, медалей, полуфабрикатов зубопротезного производства и т.д., выражают пробой; обычно добавкой служит медь (т. н. лигатура). В сплаве с платиной З. используется в производстве химически стойкой аппаратуры, в сплаве с платиной и серебром - в электротехнике. Соединения З. используют в фотографии (тонирование).

С. А. Погодин.

З. в искусстве. З. применяется с древнейших времён в ювелирном искусстве (украшения, культовая и дворцовая утварь и т.д.), а также для золочения. Благодаря своей мягкости, ковкости, способности тянуться З. поддаётся особо тонкой обработке чеканкой, литьём, гравировкой. З. используют для создания разнообразных декоративных эффектов (от глади жёлтой полированной поверхности с плавными переливами световых бликов до сложных фактурных сопоставлений с богатой светотеневой игрой), а также для выполнения тончайшей филиграни. З., часто окрашенное примесями др. металлов в различные цвета, применяется в сочетании с драгоценными и поделочными камнями, жемчугом, эмалью, чернью.

В медицине препараты З. используют в виде взвеси в масле (отечественный препарат кризанил, зарубежный - миокризин) или водорастворимых препаратов (зарубежные - санкризин и солганал) для инъекций при лечении хронических ревматических артритов, эритематозной красной волчанки, часто в сочетании с гормональными и др. препаратами. Препараты З. нередко вызывают побочные явления (повышение температуры тела, раздражение кишечника, почек и др.). Противопоказания к применению препаратов З.: тяжёлые формы туберкулёза, сахарный диабет, заболевания сердечно-сосудистой системы, печени, почек, крови.

Радиоактивное З. (чаще 198 au) вводят в ткани в виде штифтов, гранул и т.п. - для гамма-терапии и в виде коллоидных растворов - для бета-терапии. Его применяют при лечении опухолей, обычно в сочетании с хирургическим и медикаментозным лечением, а также с диагностическими целями - в виде коллоидных растворов при исследовании ретикуло-эндотелиальной системы, печени, селезёнки и др. органов.

Лит.: Плаксин И. Н., Золото, в кн.: Краткая химическая энциклопедия, т. 2, М., 1966; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966, с. 439-451; ullmanns enzykiop a die dertechnischen chemie, 3 aufl., bd 8, m u nch. - b., 1957, s. 253-307; Магакьян И. Г., Рудные месторождения, 2 изд., Ер., 1961; Русское золотое и серебряное дело 15-20 веков, М., 1967 (библ. с. 289-93); rosenberg М., geschichte der goldschmiedekunst auf technischer grundlage, fr./m., 1918.

Экономическое значение. З. в условиях товарного производства выполняет функцию всеобщего эквивалента. «Первая функция золота состоит в том, чтобы доставить товарному миру материал для выражения стоимости, т. е. для того, чтобы выразить стоимости товаров как одноименные величины, качественно одинаковые и количественно сравнимые» (Маркс К., в кн.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23, с. 104). Выражая стоимость всех др. товаров, З. в качестве всеобщего эквивалента приобретает особую потребительную стоимость, становится деньгами. «Золото и серебро по природе своей не деньги, но деньги по своей природе - золото и серебро» (Маркс К., там же, т. 13, с. 137). Товарный мир выделил З. в качестве денег потому, что оно обладает наилучшими для денежного товара физическими и химическими свойствами: однородностью, делимостью, сохраняемостью, портативностью (большой стоимостью при небольших объёме и весе), легко поддаётся обработке. Значительное количество З. применяется для изготовления монет или в форме слитков хранится в качестве золотого запаса центральных банков (государства). З. широко используется для промышленного потребления (в радиоэлектронике, приборостроении и др. прогрессивных отраслях), а также как материал для изготовления ювелирных изделий.

Первоначально З. употреблялось исключительно для выделки украшений, затем оно стало служить средством сбережения и накопления богатств, а также обмена (сначала в форме слитков). В качестве денег З. использовалось ещё за 1500 лет до н. э. в Китае, Индии, Египте и государствах Месопотамии, а в Древней Греции - в 8-7 вв. до н. э. В Лидии, богатой месторождениями З., в 7 в. до н. э. началась чеканка первых в истории монет. Имя лидийского царя Креза (правил около 560-546 до н. э.) стало синонимом несметного богатства. На территории СССР (в Армении) монеты из З. Чеканились в 1 в. до н. э. Но в древности и в средние века З. не являлось основным валютным металлом. Наряду с ним функции денег выполняли медь и серебро.

Погоня за З., страсть к обогащению были причинами многочисленных колониальных и торговых войн, в эпоху Великих географических открытий толкали на поиски новых земель. Поток драгоценных металлов в Европу после открытия Америки явился одним из источников первоначального накопления капитала. До середины 16 в. из Нового Света в Европу ввозилось преимущественно З. (97-100% ввозимого металла), а со 2-й трети 16 в., после открытия богатейших месторождений серебра в Мексике и Перу - преимущественно серебро (85-99%). В России в начале 19 в. стали разрабатываться новые месторождения З. на Урале и в Сибири, и в течение трёх десятилетий страна занимала первое место в мире по его добыче. В середине 19 в. были открыты богатые месторождения З. в США (Калифорния) и Австралии, в 1880-х гг. - в Трансваале (Южная Африка). Развитие капитализма, расширение межконтинентальной торговли усилили спрос на денежные металлы, и, хотя добыча З. возросла, во всех странах наряду с З. в качестве денег ещё продолжало широко использоваться серебро. В конце 19 в. произошло резкое снижение стоимости серебра вследствие совершенствования способов его добычи из полиметаллических руд. Рост мировой добычи З. и особенно прилив его в Европу и США из Австралии и Африки ускорили вытеснение обесценившегося серебра и создали условия для перехода большинства стран к монометаллизму (золотому) в его классической форме золотомонетного стандарта. Первой к золотому монометаллизму перешла в конце 18 в. Великобритания. К начальник 20 в. золотая валюта утвердилась в большинстве стран мира.

Отражая отношения людей в условиях стихийного товарного производства, власть З. выступает на поверхности явлений как отношение вещей, кажется натуральным внутренним свойством З. и порождает золотой и денежный фетишизм. Страсть к накоплению золотых богатств растет безгранично, толкает на чудовищные преступления. Особенно возрастает власть З. при капитализме, когда товаром становится рабочая сила. Образование при капитализме мирового рынка расширило сферу обращения З. и сделало его мировыми деньгами.

В период общего кризиса капитализма подрывается золотой стандарт. Во внутреннем обращении капиталистических стран господствующими становятся бумажные деньги и неразменные на З. банкноты. Ограничиваются или вовсе запрещаются вывоз З. и его купля-продажа. В связи с этим З. перестаёт выполнять функции средства обращения и средства платежа, но, выступая идеально как мера стоимости, а также сохраняя значение средства образования сокровищ и мировых денег, остаётся базой денежных систем и главным средством окончательного урегулирования взаимных денежных требований и обязательств капиталистических стран. Размеры запасов З. - важный показатель устойчивости капиталистических валют и экономического потенциала отдельных стран. Купля-продажа З. для промышленного потребления, а также и для частной тезаврации (накопления) осуществляется на специальных рынках золота. Выпадение З. из свободного межгосударственного рыночного оборота вызвало сокращение его доли в валютной системе капиталистического мира и, прежде всего, в валютных резервах капиталистических стран (с 89% в 1913 до 71% в 1928, 69% в 1958 и 55% в 1969). Всё более значительная часть вновь добываемого З. поступает для тезаврации и промышленного использования (в современной химической промышленности, для ракетостроения, космической техники). Так, за 1960-70 частная тезаврация З. возросла в 3,3 раза, его промышленное и ювелирное использование почти в 2,3 раза, золотые запасы капиталистических стран сохранились практически на одном уровне (41 млрд. долл.). (О добыче З. в капиталистических странах см. в ст. Золотодобывающая промышленность . )

В условиях социалистической экономики З. также является всеобщим эквивалентом, выступая мерой стоимости и масштабом цен. С 1 января 1961 золотое содержание советского рубля установлено в 0,987412 г чистого З. Это же количество З. Положено в основу переводного рубля - международной социалистической валюты стран - членов СЭВ. На мировом социалистическом рынке З. выполняет функцию мировых денег.

Лит.: Михалевский Ф. И., Золото в период мировых войн, [М.], 1945; его же, Золото в системе капитализма после второй мировой войны, М., 1952; Борисов С. М., Золото в экономике современного капитализма, М., 1968.

Как следует из вышеизложенного, золото обладает целым рядом уникальных свойств: среди металлов имеет наибольшую электроотрицательность, наибольшее сродство к электрону, наибольшую орбитальную плотность, ковкость и пластичность. Это элемент среди металлов, наиболее близкий к неметаллам по своим химическим свойствам, и в то же время по своим физическим свойствам - типичный металл.

Уникальность золота как химического элемента становится во многом понятной при внимательном рассмотрении и анализе его местонахождения в периодической системе элементов Д.И. Менделеева (неразвернутый вариант): имея порядковый номер 79, оно занимает исключительное положение - располагается в самом нижнем левом углу таблицы (рис. 2). Ниже и несколько правее золота находится лишь один элемент - франций, с порядковым номером 87, но он в природных условиях практически не фиксируется. Франций - редчайший элемент из группы редких. Из всех химических элементов (исключая трансурановые) он самый неустойчивый. Период полураспада его наиболее устойчивого изотопа составляет всего 22 мин. Получают франций в ничтожных количествах, не поддающихся взвешиванию, искусственным путем в результате проведения ядерных реакций, в том числе при облучении (бомбардировке) золота ускоренными многозарядными ионами или протонами высоких энергий. По подсчетам, из 5976*10в18 т земного вещества на долю франция приходится всею чуть больше 500 г.
Золото, являясь ближайшим верхним соседом франция по первой группе элементов, также характеризуется соответственно крайне низким содержанием в земной коре. Кларк его хотя и намного выше в сравнении с францием, но тем не менее остается очень невысоким - порядка4 мг/т. Кларк же всех других металлов, расположенных в таблице Д.И. Менделеева ближе франция, т. е. с порядковым номером менее 87, намного выше - в 20-1000 раз. При этом самые низкие кларки имеют металлы, являющиеся самыми близкими соседями золота по таблице - серебро, платина и ртуть, расположенные соответственно в одной подгруппе - выше золота и левее и правее его - в одном ряду с золотом. Именно кларки этих трех металлов примерно в 20 раз превышают кларк золота. Все же остальные металлы, в том числе таллий, свинец и висмут, имеют кларки на 2-3 и более порядка больше, чем золото.

Этим объясняется сравнительно редкая распространенность золоторудных месторождений и, главное, относительно низкие содержания в них золота. Так, по сравнению с молибденом, вольфрамом и оловом промышленные содержания золота меньше в среднем в тысячу раз, в сравнении со свинцом и цинком - в десять тысяч раз. Этим прежде всего, а также сложностью геологического строения золоторудных месторождений и обычно крайне неравномерным распределением в них металлов объясняются высокие цены на золото и использование его в качестве общепризнанного валютного металла.

При крупных запасах месторождения золота могут являться рентабельными для эксплуатации по простейшим флотационно-гравитационным схемам обогащения уже при содержаниях 2-3 г/т. При благоприятных горно-технических условиях и технологических свойствах руд, пригодных для избирательного выщелачивания металла, отрабатываются месторождения и с более низкими содержаниями - 0,5-1,5 г/т. По мере дальнейшего технического прогресса в эксплуатацию, несомненно, будут вовлекаться объекты и с более низкими концентрациями золота, особенно при комплексной переработке руд.

Золоторудные месторождения в свете сказанного - редко встречающиеся образования, в которых концентрация основного полезного компонента в определенном объеме возрастает по сравнению с обычным кларковым фоном не менее чем в сотни-тысячи раз за счет исключительно благоприятного для рудоконцентрирования сочетания совокупности различных факторов - геохимических, структурно-тектонических, палеогидрологических, метаморфических или магматических. Успешные поиски и оценка месторождений золота требуют, очевидно, большого искусства, умелого использования и знания всех этих факторов.

В периодической системе элементов Д.И. Менделеева золото находится в одной I группе со щелочными металлами - Na, К, Rb, Cs - и как последний по своим физическим свойствам является типичным металлом. Однако по положению в группе оно существенно отличается от щелочных металлов: располагается не в главной, а в побочной подгруппе, совместно с медью и серебром. Соответственно и его химические свойства существенно иные. Обусловлено это тем, что наружный электрон атома золота (как меди и серебра) находится гораздо ближе к ядру и, следовательно, сильнее притягивается к нему. По этой же причине ионы золота гораздо легче восстанавливаются. т. е. не отдают, а присоединяют электроны. Различиями в строении электронных слоев элементов основной и побочной подгрупп вызваны и существенные отличия в валентности золота и щелочных металлов.

Исходя из положения в таблице Д.И. Менделеева становится понятным также исключительное многообразие геохимических свойств золота: оно одновременно является сидерофильным, халькофильным и литофильным элементом. Резко проявлены у него также галогенофильные, гидрофильные и особенно биофильные свойства. Хорошо выражены и атмофгдьные (нейтральные) свойства золота, определяющие его “самородность”. Все это обусловливает “космополитизм” золота - способность образовывать промышленные концентрации в итоге весьма разнообразных реакций и геологических процессов. He случайно исседователи ранее относили золото по геохимическим особенностям к различным классам или группам: В.М. Гольдшмидт -к халькофильному классу, В.И. Вернадский - к благородным металлам, Е. Садецки-Кардош - к сидерофильной группе, американские исследователи - к биофильным элементам, А.И. Перельман - к халькофильным металлам и т. д.

Сидерофильные свойства золота хорошо известны и вполне понятны исходя из его расположения в периодической таблице элементов: в ней золото соседствует с платиной (порядковый номер платины 78, золота - 79) - элементом VIII группы с ярко выраженными сидерофильными свойствами. Впервые обстоятельно сидерофильные свойства золота были показаны Ю.Г. Щербаковым, посвятившим этому вопросу детальные исследования. Золото как в рассеянном состоянии, так и в рудных концентрациях явно тяготеет к темноцветным и рудным минералам и горным породам (осадочным, метаморфическим, магматическим), содержащим в существенных количествах железо. Кларк его для железосодержащих минералов и пород явно более высокий, чем для слабожелезистых и лишенных железа. Особенно высокорезультативными оказались работы последних лет по оценке золотоносности железистых кварцитов. Установлено, что они практически постоянно содержат существенные концентрации сингенетичного золота и новообразованные, регенерированные, часто рентабельные для извлечения. Золоторудные месторождения в железистых кварцитах, в первую очередь раннедокембрийские (AR-PR1), занимают в настоящее время одно из важных мест в золотодобыче многих зарубежных стран. Выделены в связи с этим золоторудные месторождения золото-джеспилитовой формации. Они нередко являются весьма крупными по запасам. особенно карбонатно-сульфидной фации. Характерные примеры - месторождения Морро-Велью, Пассажем и Panococ на Бразильском щите, Копперхед и Хилл-50 - на Западно-Австралийском щите, Сентрал-Патрисиа - на Канадском щите.

На территории России золотоносность железистых кварцитов изучена еще слабо или очень слабо, выполнен относительно небольшой объем поисковых работ. Повышенные содержания золота установлены в железистых кварцитах Кривого Рога и Михайловского рудника Курской магнитной аномалии (до 1,5 г/т в отдельных пробах, редко - выше), атакже на юге Сибирской платформы в Якутии (участок Лемочинский) и в Амурской области (участок Хорогочи), где содержания пока оказались невысокими, но но отдельным редким пробам достигают 10-15 г/т. Железистые кварциты Буреинского массива (месторождение Кимканское и др.) специально на золото вообще не оценивалось. В нескольких отобранных штуфных пробах повышенные содержания золота не обнаружены. Однако в железистых кварцитах соседней провинции Хейлуншян Китая, аналогичных по возрасту, известно отработанное золоторудное месторождение со средним содержанием золота порядка 1,5 г/т. Повышенные содержания характерны для гидроксидов железа, магнетита и сульфидов железа. Отмечены повышенные содержания золота (до 1,4 г/т) и в металлической фазе железных метеоритов.

В разрабатываемых зарубежных месторождениях золото-джеспилитовой формации средние содержания золота весьма различны - от 1,5 до 10-15 г/т.

Халькофильные свойства золота менее заметны исходя из положения его в таблице Менделеева, и не случайно в связи с этим взаимоотношения золота непосредственно с серой нередко противоречивы. Более характерна ассоциация золота с железосодержащими сульфидами, поскольку для рудообразования наиболее предпочтительны условия, проявляющиеся одновременно повышенным содержанием железа и серы (сульфидов). Поэтому лучше характеризовать золото как сидерохалькофильный элемент. Непосредственно в таблице Менделеева связь золота с серой выражается характером свойств его ближайших “соседей” по вертикали и горизонтали - серебра и ртути. Оба они типичные халькофилы. He случайна и связь золота с сульфидами, давно учитываемая при поисках и прогнозировании месторождений золота.

Галогенофильные свойства золота давно известны и используются при его растворении. Однако при формальном рассмотрении местонахождения золота в таблице Менделеева они не видны. Фтор, хлор, бром, йод пространственно значительно удалены от золота. Как отражение этого характерно отсутствие минералов золота, содержащих галогены. Галогениды золота - наиболее легко растворимые его соединения. В геологических образованиях тесная связь золота с фтором проявляется довольно часто, но имеет скрытый характер. Как уже отмечалось, наличие фторапатита в золоторудных месторождениях - нередкое явление. Установлены случаи корреляционной связи с фтором.

Биосильные (органофильные) свойства золота выражены интенсивно и проявляются в его тесной связи с различными органическими образованиями. Характерно наличие металлорганических соединений. выявляется все большая значимость золота в жизнедеятельности различных растительных и животных организмов. Углеродистые толщи - генераторы наиболее крупных по запасам месторождений золота.

Непосредственно из таблицы Менделеева важная роль углерода в геохимии золота также особенно не заметна. Однако она становится понятной и, более того, ее можно предсказать, если принять во внимание геохимические свойства углерода и золота, способность различных соединений золота легко восстанавливаться углеродом.

Литофильные свойства золота, как правило, не выражены. Тесная ассоциация его с кварцем обусловливается, по существу, не химическими, а кристаллофизическими и кристаллохимическими свойствами золота и геля кремнезема, повышенной способностью последнего захватывать, транспортировать и удерживать коллоидальное золоте и гидроксидные соединения его типа Au(OH) и Au(OH)3.

Гидрофильные свойства типичны для золота и вытекают из положения его в I группе таблицы Менделеева. Проявляются они в повышенной растворимости его в воде, что установлено экспериментально. В растворенном состоянии одновременно может присутствовать несколько форм золота- катионное, анионное и коллоидное, а также различные гидрооксокомплексы. Роль их в рудообразовании может быть весьма существенной - как в гипогенных, так и в поверхностных условиях.

Атмфильные (нейтральные) свойства золота вытекают из “благородности” золота как химического элемента и являются определяющими в понимании его геохимии, условий концентрированного осаждения и распределения в различных горных породах и минералах. Проявляются они также и в высокой летучести золота. В различных горных породах и минералах золото в подавляющей массе присутствует в виде электронейтральных частиц различных размеров - от мельчайших тонкодисперсных до крупных самородков, массой несколько килограммов.