Значение периодической системы кратко. Значение периодического закона менделеева. Что мы узнали

Открытие Д.И. Менделеевым периодического закона имеет огромное значение для развития химии. Закон явился научной основой химии. Автору удалось систематизировать богатейший, но разрозненный материал, накопленный поколениями химиков по свойствам элементов и их соединений, уточнить многие понятия, например, понятия «химический элемент» и «простое вещество». Кроме того, Д.И. Менделеев предсказал существование и с потрясающей точностью описал свойства многих не известных к этому времени элементов, например, скандия (экабор), галлия (экаалюминий), германия (экасилиций). В ряде случаев, основываясь на периодическом законе, ученый изменил принятые в то время атомные массы элементов (Zn , La , I , Er , Ce , Th ,U ), которые ранее были определены на основе ошибочных представлений о валентности элементов и составе их соединений. В некоторых случаях Менделеев расположил элементы в соответствии с закономерным изменением свойств, предполагая возможную неточность значений их атомных масс (Os , Ir , Pt , Au , Te , I , Ni , Co ) и для некоторых из них в результате последующего уточнения атомные массы были исправлены.

Периодический закон и периодическая система элементов служат научной основой прогнозирования в химии. С момента опубликования периодической системы в ней появилось более 40 новых элементов. На основе периодического закона были получены искусственным путем трансурановые элементы, в том числе № 101, названный менделевием.

Периодический закон сыграл решающую роль в выяснении сложной структуры атома. Нельзя забывать, что закон был сформулирован автором в 1869 году, т.е. почти за 60 лет до того, как окончательно сложилась современная теория строения атома. И все открытия ученых, последовавшие после опубликования закона и периодической системы элементов (о них мы говорили в начале изложения материала) послужили подтверждением гениального открытия великого русского химика, его необыкновенной эрудиции и интуиции.

ЛИТЕРАТУРА

1. Глинка Н. А. Общая химия / Н. А. Глинка. Л.: Химия, 1984. 702 с.

2. Курс общей химии / под ред. Н. В. Коровина. М.: Высшая школа, 1990. 446 с.

3. Ахметов Н.С. общая и неорганическая химия/ Н.С. Ахметов. М.: Высшая школа, 1988. 639 с.

4. Павлов Н.Н. Неорганическая химия/ Н.Н. Павлов. М.: Высшая школа, 1986. 336 с.

5. Рэмсден Э.Н. Начала современной химии/ Э.Н. Рэмсден. Л.: Химия, 1989. 784 с.

Строение атома

Методические указания

по курсу «Общая химия»

Составили: СТАНКЕВИЧ Маргарита Ефимовна

Ефанова Вера Васильевна

Михайлова Антонина Михайловна

Рецензент Е.В.Третьяченко

Редактор О.А.Панина

Подписано в печать Формат 60х84 1/16

Бум. офсет. Усл.-печ. л. Уч.-изд.л.

Тираж экз. Заказ Бесплатно

Саратовский государственный технический университет

410054 г. Саратов, ул. Политехническая, 77

Отпечатано в РИЦ СГТУ, 410054 г. Саратов, ул. Политехническая, 77

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки

Билеты по химии за курс 10 класса.

Билет №1

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атомов. Значение периодического закона для развития науки.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон:

Свойства простых тел... и соединений элементов находятся в периодической зависимости от вели­чины атомных масс элементов.

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в верти­кальные столбцы - группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюда­лась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий.

Причина состоит в том, что Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома.

После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

Свойства химических элементов и соединений на­ходятся в периодической зависимости от зарядов атомных ядер.

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома.

Эта формулировка объяснила "нарушения" Перио­дического закона.

В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для эле­ментов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химиче­ских элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств и свойств оксидов.

Научное значение периодического закона. Периоди­ческий закон позволил систематизировать свойства хи­мических элементов и их соединений. При составлении периодической системы Менделеев предсказал сущест­вование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойст­ва неоткрытых элементов, что облегчило их открытие.

6. ???

7. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Зна­чение периодического закона и периодической системы.

Периодический закон Д. И. Менделеева Свойства простых тел, а также формы и свойства соеди­нений элементов находятся в периодической зависимости от. величины атомных весов элементов

Периодическая система элементов. Ряды элементов, в пре­делах которых свойства изменяются последовательно, как, напри­мер, ряд из восьми элементов от лития до неона или от натрия до аргона, Менделеев назвал периодами. Если напишем эти два периода один под другим так, чтобы под литием находился натрий, а под неоном - аргон, то получим следующее расположение эле­ментов:

При таком расположении в вертикальные столбцы попадают элементы, сходные по своим свойствам и обладающие одинаковой валентностью, например, литий и натрий, бериллий и магний и т. д.

Разделив все элементы на периоды и располагая один период под другим так, чтобы Сходные по свойствам и типу образуемых соединений элементы приходились друг под другом, Менделеев со­ставил таблицу, названную им периодической системой элементов по группам и рядам.

Значение периодической системы. Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они обра­зуют стройную систему и находятся в тесной связи друг с дру­гом, но и явилась могучим орудием для дальнейших исследо­ваний.

8. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.

Зависимость атомных радиусов от заряда ядра атома Zимеет периодический характер. В пределах одного периода с увеличе­ниемZпроявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах

С началом застройки нового электронного слоя, более удален­ного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются.

Потеря атомов электронов приводит к уменьшению его эф­фективных размеров^ а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего элек­тронейтрального атома.

В пределах одной подгруппы радиусы ионов одинакового за­ряда возрастают с увеличением заряда ядра Такая закономерность объясняется увеличением числа элек­тронных слоев и растущим удалением внешних электронов от ядра.

Наиболее ха­рактерным химическим свойством металлов является способность их атомов легко отдавать внешние электроны и превращаться в положительно заряженные ионы, а неметаллы, наоборот, харак­теризуются способностью присоединять электроны с образованием отрицательных ионов. Для отрыва электрона от атома с превраще­нием последнего в положительный ион нужно затратить некоторую энергию, называемую энергией ионизации.

Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наи­меньшее напряжение поля, при котором скорость электронов ста­новится достаточной для ионизации атомов, называется потен­циалом ионизации атомов данного элемента и выражается в вольтах.

При затрате достаточной энергии можно оторвать от атома два, три и более электронов. Поэтому говорят о первом потен­циале ионизации (энергия отрыва от атома первого элек­трона) .втором потенциале ионизации (энергия отрыва второго электрона)

Как отмечалось выше, атомы могут не только отдавать, но и присоединять электроны. Энергия, выделяющаяся при присоедине­нии электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации, обычно выражается в электронвольтах. Так, сродство к электрону атома водорода равно 0,75 эВ, кислорода-1,47 эВ, фтора -3,52 эВ.

Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно; из этого следует, что для атомов боль­шинства металлов присоединение электронов энергетически невы­годно. Сродство же к электрону атомов неметаллов всегда поло­жительно и тем больше, чем ближе к благородному газу распо­ложен неметалл в периодической системе; это свидетельствует об усилении неметаллических свойств по мере приближения к концу периода.

(?)9. Химическая связь. Основные типы и характеристики химической свя­зи. Условия и механизм ее образования. Метод валентных связей. Ва­лентность. Понятие о методе молекулярных орбиталей

При взаимодействии атомов между ними может возникать хи­мическая связь, приводящая к образованию устойчивой мно­гоатомной системы - молекулы, молекулярного нона, кристалла. условием образования химической связи является, уменьше­ние потенциальной энергии системы взаимодействующих атомов.

Теория химического строения. Основу теории, разработан­ной А. М. Бутлеровым, составляют следующие положения:

    Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

    Соединение атомов происходит в соответствии с их валент­ностью.

    Свойства веществ зависят не только от их состава, но и от их «химического строения», т. е. от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой.

Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Разработан­ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентиой связи, позволил понять строение большого числа молекул. Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде слу­чаев не в состоянии правильно описать структуру и свойства мо­лекул, все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял сво­его значения до настоящего времени. Валентность - сложное понятие. Поэтому существует несколь­ко определений валентности, выражающих различные стороны этого понятия. Наиболее общим можно считать следующее опре­деление: валентность элемента - это способность его атомов со­единяться с другими атомами в определённых соотношениях.

Первоначально за единицу валентности была принята валент­ность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента.

Мы уже знаем, что состояние электродов в атоме описывается квантовой механикой как совокупность атомных электронных ор­биталей (атомных электронных облаков); каждая такая орбиталь характеризуется определенным набором атомных квантовых чисел. Метод МО исходит из предположения, что состояние электронов в молекуле также может быть описано как совокупность молеку­лярных электронных орбиталей (молекулярных электронных обла­ков), причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел. Как и в лю­бой другой многоэлектронной системе, в молекуле сохраняет свою справедливость принцип Паули (см. § 32), так что на каждой МО может находиться не более двух электронов, которые должны об­ладать противоположно направленными спинами.

Значение периодического закона для развития науки

На основе Периодического закона Менделеев составил классификацию хмических элементов -- периодическую систему. Она состоит из 7 периодов и 8 групп.
Периодический закон положил начало современному этапу развития химии. С его открытием появилась возможность предсказывать новые элементы и описывать их свойства.
С помощью Периодического закона были исправлены атомные массы и уточнены валентности некоторых элементов; закон отражает взаимосвязь элементов и взаимообусловленность их свойств. Периодический закон подтвердил наиболее общие законы развития природы, открыл путь к познанию строения атома.

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований.

В время, когда Менделеев на основе открытого им периоди­ческого закона составлял свою таблицу, многие элементы были еще неизвестны. Так, например, был неизвестен элемент , находящийся в четвертом ряду. По атомному весу вслед за каль­цием шел , но нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как четырехвалентен, образует высший окисел ТiO 2 , да и по всем другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свобод­ное место между кальцием и титаном. На том же основании в пятом ряду между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами таллием и герма­нием. Свободные места остались и в других рядах. Менде­леев был не только убежден, что должны существовать неиз­вестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их поло­жении среди других элементов периодической системы.

Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название эка-бор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места в пятом ряду между цинком и мышьяком, были названы эка-алюминием и эка-силицием.

Предсказывая свойства этих неизвестных элементов, Менде­леев писал: «Решаюсь сделать это ради того, чтобы хотя со вре­менем, когда будет открыто одно из этих предсказываемых тел, иметь возможность окончательно увериться самому и> уверить других химиков в справедливости тех предположений, которые лежат в основании предлагаемой мною системы».

В течение следующих 15 лет предсказания Менделеева бле­стяще подтвердились: все три ожидаемых элемента действительно были открыты. Сперва французский химик Лекок де-Буабодран открыл новый элемент , обладающий всеми свойствами эка-алюминия; вслед за тем в Швеции Нильсоном был открыт , имевший свойства эка-бора, и, наконец, спустя еще не­сколько лет в Германии Винклер открыл элемент, названный им германием, который оказался тождественным с эка-силицием.

Чтобы судить об удивительной точности предсказаний Мен­делеева, сопоставим свойства предсказанного им в 1871 г. эка-силиция со свойствами открытого в 1886 г. германия:

Свойства эка-силиция

Эка-силиций Es - плавкий металл, способный в сильном жару улету­чиваться

Атомный вес Es близок к 72

Удельный вес Es около 5,5

EsО 2 должен легко восстанавливаться

Удельный вес EsO 2 будет близок к 4,7

ЕвСl 4 - жидкость, кипящая около 90°, удельный вес ее близок к 1,9

Свойства германия

Атомный вес Ge 72,6

Удельный вес Ge 5,35 при 20°

GeО 2 легко восстанавливается углем или водородом до металла

Удельный вес GeO 2 4,703 при 18°

GeCl 4 - жидкость, кипящая при 83°, удельный вес ее 1,88 при 18°

Открытие галлия, скандия и германия было величайшим три­умфом периодического закона. Весь мир заговорил о сбывшихся теоретических предсказаниях русского химика и о его периоди­ческом законе, получившем после этого всеобщее признание.

Сам Менделеев с глубоким удовлетворением встретил эти от­крытия. «Писавши в 1871 г. статью о приложении периодического закона к определению свойств еще не открытых элементов, - говорил он, - я не думал, что доживу до оправдания этого след­ствия периодического закона, но действительность ответила иначе. Описаны были мною три элемента: экабор, экаалюминий и экасилиций, и не прошло 20 лет, как я имел уже величайшую радость видеть все три открытыми…» .

Большое значение имела периодическая система также в ре­шении вопроса о валентности и величинах атомных весов некото­рых элементов. Так, например, элемент долгое время считался аналогом алюминия и его окислу приписывали формулу Ве 2 O 3 . Путем анализа было найдено, что в окиси бериллия на 16 весовых частей кислорода приходится 9 вес. ч. бериллия. Но так как летучие соединения бериллия не были известны, опре­делить точно атомный вес этого элемента не представлялось воз­можным. Исходя из процентного состава и предполагаемой фор­мулы окиси бериллия, его атомный вес считали равным 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно над магнием, так что окись его должна иметь формулу ВеО, откуда атомный вес бериллия полу­чается равным девяти. Этот вывод вскоре был подтвержден определениями плотности паров хлористого бериллия, что дало возможность вычислить атомный вес бериллия.

Точно так же периодическая система дала толчок к исправле­нию атомных весов некоторых редких элементов. Например, це­зию приписывали раньше атомный вес 123,4. Менделеев же, рас­полагая элементы в таблицу, нашел, что по своим свойствам це­зий должен стоять в левом столбце первой группы под рубидием и потому будет иметь атомный вес около 130. Новейшие опреде­ления показывают,что атомный вес цезия равен 132,91.

Первоначально был встречен очень хо­лодно и недоверчиво. Когда Менделеев, опираясь на свое откры­тие, поставил под сомнение ряд опытных данных относительно атомных весов и решился предсказать существование и свойства еще не открытых элементов, многие химики отнеслись к его сме­лым высказываниям с нескрываемым пренебрежением. Так, на­пример, Л. Мейер писал в 1870 г. о периодическом законе: «Было бы поспешно предпринимать на таких шатких основаниях изме­нение доныне принятых атомных весов».

Однако после того как предсказания Менделеева подтверди­лись и получил всеобщее признание, в ряде стран были предприняты попытки оспорить первенство Менде­леева и приписать открытие периодического закона другим ученым.

Протестуя против таких попыток, Менделеев писал: «Утверждение закона возможно только при помощи вывода из него следствий, без него невозможных и не ожидаемых, и оправ­дания тех следствий в опытной проверке. Поэтому-то, увидев , я с своей стороны (1869-1871) вывел из него такие логические следствия, которые могли показать - верен он или нет. Без такого способа испытания не может утвердиться ни один закон природы. Ни Шанкуртуа, которому французы при­писывают право на открытие периодического закона, ни Нью­лэндс, которого выставляют англичане, ни Л. Мейер, которого цитировали иные как основателя периодического закона, не рисковали предугадывать свойства неоткрытых элементов, изме­нять «принятые веса атомов» и вообще считать периодический за­кон новым, строго постановленным законом природы, могущим охватывать еще доселе необобщенные факты, как это сделано мною с самого начала (1869)».

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии и других естественных наук, но и для философии, для всего на­шего миропонимания. Вскрывая зависимость между свойствами химических элементов и количеством в их атомах, пе­риодический закон явился блестящим подтверждением всеобщего закона развития природы, закона перехода количества в каче­ство.

До Менделеева химики группировали элементы по их химиче­скому сходству, стремясь сблизить между собой только сходные элементы. Совершенно иначе подошел к рассмотрению элементов Менделеев. Он встал на путь сближения несходных элементов, расположив рядом химически различные элементы, имевшие близкие значения атомных весов. Именно это сопоставление позволило вскрыть глубокую органическую связь между всеми элементами и привело к открытию периодического закона.

С открытием Менделеева изменилась вся мировая наука. Значение периодического закона химических элементов стало важно не только для химии, но и физики, космологии, геохимии.

Открытие Менделеева

Периодический закон был открыт Дмитрием Менделеевым в 1871 году. Разные учёные XIX века пытались найти закономерность и упорядочить все известные элементы. Менделеев установил, что химические свойства элементов меняются и повторяются с возрастанием относительной атомной массы.

Рис. 1. Менделеев.

На основе этого он расставил 63 известных элемента по шести периодам и восьми группам. Каждый период начинался металлом и заканчивался неметаллом. Менделеев оставил пробелы в таблице для неоткрытых элементов и сделал перерасчёт относительной атомной массы некоторых элементов.

Например, считалось, что атомная масса бериллия - 13,5, а не 9, как это известно сейчас. По логике Менделеева металл необходимо было поместить между углеродом с атомной массой 12 и азотом с атомной массой 14. Однако это нарушало бы принцип периодического закона: металл оказался бы между двумя неметаллами. Поэтому Менделеев предположил, что место бериллия между литием (7) и бором (9), т.е. атомная масса бериллия должна быть примерно 9, а валентность - II или III.

Математическая точность Менделеева впоследствии подтвердилась экспериментально, пропущенные учёным клетки постепенно стали заполняться. При этом Менделеев не знал о существовании элементов, их ещё предстояло открыть, но уже смог определить их порядковый номер, атомную массу, валентность, свойства.

В этом заключается главное значение открытия периодического закона Менделеева. Несмотря на новые знания, нахождение новых элементов и расширение таблицы, принцип периодического закона сохраняется и подтверждается до сих пор.

Рис. 2. Современная таблица Менделеева.

Наиболее подробно Менделеев описал три фантомных элемента - экабор, экаалюминий, экасилиций. Они были открыты в 70-80-х годах XIX века и названы соответственно скандием, галлием, германием.

Современность

Открытие, сделанное Менделеевым, повлияло на развитие науки. Если раньше новые элементы находились случайно, то с периодической таблицей химики целенаправленно, ориентируясь на пустые клетки, стали искать элементы. Так были открыты многие редко встречающиеся элементы, например, рений.

Рис. 3. Рений.

Таблица также дополнилась:

  • инертными газами;
  • радиоактивными элементами.

Кроме того, в конце XIX века благодаря теории строения атома стало известно, что свойства элементов находятся в зависимости не от относительной массы атомов, как это вывел Менделеев, а от заряда ядер. При этом порядковый номер элементов совпал с показателем заряда атома. Это позволило связать химию и физику и продолжить изучение внутриатомной энергии.

Таблица Менделеева охватывает всю неорганическую химию и даёт чёткое представление о химических, физических свойствах элементов и их месте во Вселенной.

Что мы узнали?

Периодический закон Менделеева повлиял на развитие химии и других смежных наук. Менделееву удалось предсказать многие элементы, которые были открыты позже. Он рассчитал для них атомную массу, определил их свойства. Значения подтверждались с нахождением элементов. Периодическая таблица задала направление химии: учёные стали искать элементы, ориентируясь на её пробелы.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон: «Свойства простых тел и соединений элементов находятся в периодической зависимости от величины атомных масс элементов.» На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в вертикальные столбцы группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюдалась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий. Причина состоит в том, что Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома.После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

«Свойства химических элементов и соединений находятся в периодической зависимости от зарядов атомных ядер.»

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома. Эта формулировка объяснила "нарушения" Периодического закона. В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для элементов главных подгрупп равен числу электронов на внешнем уровне.

Научное значение периодического закона . Периодический закон позволил систематизировать свойства химических элементов и их соединений. При составлении периодической системы Менделеев предсказал существование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойства неоткрытых элементов, что облегчило их открытие.Первое из них последовало через четыре года.

Но не только в открытии нового большая заслуга Менделеева.

Менделеев открыл новый закон природы. Вместо разрозненных, не связанных между собою веществ перед наукой встала единая стройная система, объединившая в единое целое все элементы Вселенной, атомы стали рассматриваться как:

1. органически связанные между собой общей закономерностью,

2. обнаруживающие переход количественных изменений атомного веса в качественные изменения их химич. индивидуальностей,

3. свидетельствующие о том, что противоположность металлич. и неметаллич. свойств у атомов носит не абсолютный, как считалось раньше, а лишь относительный характер.

24.Возникновение структурных теорий в процессе развития органической химии. Атомно-молекулярное учение как теоретическая основа структурных теорий.

Органическая химия. В течение всего 18 в. в вопросе о химических взаимоотношениях организмов и веществ ученые руководствовались доктриной витализма – учения, рассматривавшего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил. Этот взгляд был унаследован и многими учеными 19 в., хотя его основы были поколеблены еще в 1777, когда Лавуазье предположил, что дыхание – процесс, аналогичный горению.

В 1828 немецкий химик Фридрих Вёлер (1800–1882), нагревая цианат аммония (это соединение безоговорочно причислялось к неорганическим веществам), получил мочевину – продукт жизнедеятельности человека и животных. В 1845 Адольф Кольбе, ученик Вёлера, синтезировал уксусную кислоту из исходных элементов – углерода, водорода и кислорода. В 1850-е годы французский химик Пьер Бертло начал систематическую работу по синтезу органических соединений и получил метиловый и этиловый спирты, метан, бензол, ацетилен. Систематическое исследование природных органических соединений показало, что все они содержат один или несколько атомов углерода и очень многие – атомы водорода. Теория типов. Открытие и выделение огромного числа сложных углеродсодержащих соединений остро поставили вопрос о составе их молекул и привели к необходимости ревизовать существующую систему классификации. К 1840-м годам ученые-химики осознали, что дуалистические идеи Берцелиуса применимы только к неорганическим солям. В 1853 была предпринята попытка классифицировать все органические соединения по типам. Обобщенная «теория типов» была предложена французским химиком Шарлем Фредериком Жераром , который полагал, что объединение различных групп атомов определяется не электрическим зарядом этих групп, а их специфическими химическими свойствами.

Структурная химия. В 1857 Кекуле, исходя из теории валентности (под валентностью понималось число атомов водорода, вступающих в соединение с одним атомом данного элемента), предположил, что углерод четырехвалентен и потому может соединяться с четырьмя другими атомами, образуя длинные цепи – прямые или разветвленные. Поэтому органические молекулы стали изображать не в виде комбинаций радикалов, а в виде структурных формул – атомов и связей между ними.

В 1874 датский химик Якоб Вант-Гофф и французский химик Жозеф Ашиль Ле Бель (1847–1930) распространили эту идею на расположение атомов в пространстве. Они считали, что молекулы не плоские, а трехмерные структуры. Эта концепция позволяла объяснить многие известные явления, например пространственную изомерию, существование молекул одинакового состава, но с разными свойствами. Очень хорошо вписывались в нее данные Луи Пастера об изомерах винной кислоты.

Периодическая система элементов оказала большое влияние на последующее развитие химии.

Дмитрий Иванович Менделеев (1834-1907)

Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, по и явилась могучим орудием для дальнейших исследований.

В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид , да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор); два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы эка-алюминием и экасилицием.

В течение следующих 15 лет предсказания Менделеева блестяще подтвердились: все три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия; вслед за тем в Швеции Л. Ф. Нильсоном был открыт скандий, имевший свойства экабора, и, наконец, спустя еще несколько лет в Германии К. А. Винклер открыл элемент, названный им германием, который оказался тождественным экасилицию.

Чтобы судить об удивительной точности предвидения Менделеева, сопоставим предсказанные им в 1871 г. свойства экасилиция со свойствами открытого в 1886 г. германия:

Открытие галлия, скандия и германия было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Так, элемент бериллий долгое время считался аналогом алюминия и его оксиду приписывали формулу . Исходя из процентного состава и предполагаемой формулы оксида бериллия, его атомную массу считали равной 13,5. Периодическая система показала, что для бериллия в таблице есть только одно место, а именно - над магнием, так что его оксид должен иметь формулу , откуда атомная масса бериллия получается равной десяти. Этот вывод вскоре был подтвержден определениями атомной массы бериллия по плотности пара его хлорида.

Точно И в настоящее время периодический закон остается путеводной нитью и руководящим принципом химии. Именно на его основе были искусственно созданы в последние десятилетия трансурановые элементы, расположенные в периодической системе после урана. Один из них - элемент № 101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием.

Открытие периодического закона и создание системы химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая зависимость между свойствами химических элементов и массой их атомов, периодический закон явился блестящим подтверждением одного из всеобщих законов развития природы - закона перехода количества в качество.

Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

Разработанная в XX веке теория строения атома в свою очередь дала периодическому закону и периодической системе элементов новое, более глубокое освещение. Блестящее подтверждение нашли пророческие слова Менделеева: «Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие».