Лабораторная работа по биологии инфузория туфелька. Инфузория-туфелька под микроскопом. Вопросы для обсуждения

С тех пор, как ученые обнаружили микробов, они учились их выращивать на различных питательных средах. Ведь для того чтобы знать, как бороться с тем или иным микроорганизмом, нужно изучить не только его форму, но и повадки, образ жизни, потребности в питании. Сейчас в лабораториях исследователи могут выращивать практически любой микроорганизм, для этого разработано огромное количество питательных сред. Но в прошлом, во времена Луи Пастера - родителя современной науки о микробах (микробиологии), в распоряжении ученых была доступна для изучения лишь вода из лесных луж и водоемов, настой сена и мясной бульон.

Слово "микроорганизм" понятие собирательное, в него входят все невидимые невооруженным глазом организмы - бактерии, грибы, одноклеточные и еще целый ряд микрожителей. К слову, вирусы не относят к микробам. Их выделяют в отдельную группу, и наблюдать их в обычный световой микроскоп не представляется возможным.

Микробы вездесущи, обнаружить их можно буквально на всем, что нас окружает. Они бывают аэробами, т.е. для их жизнедеятельности требуется присутствие свободного молекулярного кислорода, но могут быть и анаэробами, способными прожить в условиях без доступа кислорода. Размеры, форма и принципы питания у микробов очень разнятся, но из них всех, пожалуй, самой красивой и причудливой является инфузория туфелька.

Инфузорий можно часами наблюдать в микроскоп. Они имеют очень необычную форму и легко узнаются среди прочих микроорганизмов. Для наблюдения за ней не требуется длительных подготовок и специальных навыков. Ее может увидеть любой желающий даже с помощью самого простого микроскопа.

Проведение опыта с инфузорией

Для проведения опыта понадобится совсем немного воды из лесной лужи, зацветшего водоема, из вазы с цветами или даже из аквариума. Идеально, если в воде окажется несколько веточек водорослей. Препарат с инфузорией можно приготовить по принципу раздавленной капли, или сделать "висячую" каплю на предметном стекле с выемкой.

При рассматривании образца под микроскопом (лучше всего это делать на среднем или большом увеличении) можно заметить двигающихся овальных существ. Строго говоря, они не совсем овальные - передний конец инфузории заострен, а задний, наоборот, имеет сильно округлую форму. Одна из боковых сторон, приблизительно по центру туловища, вогнута, что придает существу большое сходство с подошвой туфли. Отсюда и название микроорганизма - инфузория туфелька. Вокруг всего тела инфузории располагаются в несколько слоев реснички, которые помогают ей двигаться и "загонять" пищу в ротовое отверстие, расположенное неподалеку от головного конца.

Для особо пытливых исследователей будет интересно понаблюдать за процессом пищеварения у инфузории. Пища, попавшая в ротовое отверстие, постепенно перемещается в "желудок" - пищеварительную вакуоль, похожую на пузырек. В ней пища переваривается, а затем выталкивается в другую вакуоль - сократительную, которая является чем то, наподобие кишечника у животных. Сократительная вакуоль служит для устранения остатков пищи наружу. Для того чтобы увидеть, как происходят эти процессы, нужно покормить инфузорию, например, несколькими капельками обычной туши для заправки перьевых ручек. После того, как инфузория заглотнет ее, можно рассмотреть месторасположение пищеварительной вакуоли - темный шарик на фоне светлого тела микроорганизма.

Многие знают, что инфузории относятся к классу простейших, но это название довольно относительное, т.к. многочисленные опыты над инфузориями обнаружили у них зачатки психической деятельности. К примеру, инфузорию помещали в узкую трубку, диаметр которой совсем немного превосходил размер самого животного. Трубку с обеих сторон запаивали. Когда инфузория доплывала до одной стороны, она делала попытки проплыть дальше, но вскоре разворачивалась головным концом и направлялась в другую сторону. Со временем инфузория стала тратить на развороты все меньше времени и сил, а значит, смогла приспособиться к новым условиям.

Но поражает в инфузории даже не это. В человеческом или другом сложном организме все клетки узкоспециализированы и выполняют какую-либо одну функцию. Инфузория же состоит из одной-единственной клетки, в которой есть, хоть и примитивная, но выделительная и пищеварительная системы, мышечная система, состоящая из сократительных волокон, двигательный аппарат из ресничек. Следовательно, эта единственная клетка может полностью обеспечивать все стороны жизнедеятельности. Возможно поэтому ученые прошлого с таким уважением относились к инфузории и часами просиживали над микроскопом, изучая и зарисовывая ее повадки.

Какие же микроскопы подойдут?

В микроскоп, способный давать увеличение не менее 600-800х крат, можно понаблюдать не только простейших, но и бактерий. Самый простой способ это сделать - собрать небольшое количество зубного налета и развести его в капельке воды. Так можно увидеть основных представителей царства бактерий. В простом лабораторном микроскопе они будут выглядеть неказисто - маленькие шарики, палочки или нити с нечеткими контурами. Но при использовании фазово-контрастного метода на более дорогостоящих лабораторных моделях можно рассмотреть гораздо больше. Их контуры станут четче, а тела будут выделяться ярким светом на темном фоне. И хотя внутреннюю структуру при таком исследовании изучить не получится (для этого нужно убить бактерий и окрасить), можно увидеть движение бактерий. А по характеру движений ученые определяют принадлежность бактерий к тому или иному классу и выявляют возбудителей некоторых болезней.

Для лабораторных же исследований, направленных на выявление и более точную идентификацию болезнетворных организмов, часто используются жидкие и плотные питательные среды. В них можно наблюдать не только отдельных микроорганизмов, но и целые колонии, т.е. большие скопления клеток, видимые невооруженным глазом. Однако эта техника достаточно сложная и не годится для применения в домашних условиях.

Лабораторная работа № 4

ОСОБЕННОСТИ СТРОЕНИЯ ИНФУЗОРИЙ

Цель: изучить структурно-функциональные особенности строения инфузорий на примере инфузории туфельки

Материалы и оборудование

  1. Культура инфузории туфельки.
  2. Микроскопы.
  3. Препаровальные иглы, пипетки, кусочки фильтровальной бумаги, клочок ваты, покровные и предметные стекла.
  4. Раствор уксусной кислоты, метиленовая синь, черная тушь, раствор иода.

Задание 1 . Поместите на предметное стекло каплю культуры с живыми инфузориями туфельками (Paramecium caudatum). Рассмотрите при малом увеличении микроскопа форму тела, передний и задний концы тела, способ движения инфузории. На временно приготовленном микропрепарате рассмотрите при малом, затем при большом увеличении локомоторные органеллы - реснички инфузории туфельки.

Зарисуйте внешний вид парамеции, убитой иодом. Обозначьте реснички, оболочку, ядро.

Исходная информация

Более закругленный суженный конец инфузории считается передним, заостренный - задним. Двигаются парамеции передним концом вперед и при этом вращаются вокруг продольной оси по ходу часовой стрелки. Поступательное движение обеспечивается синхронным биением отдельных групп ресничек. Работа сменяющих последовательно друг друга групп ресничек позволяет инфузориям

Рис. 12. Парамеции, убитые иодом (при большом увеличении): 1 - реснички; 2 - ядро; 3 - пелликула

двигаться вперед или назад.

Всего равномерно расположенных ресничек на теле инфузории туфельки насчитывается более 10 тыс. Наиболее длинные реснички находятся на заднем (хвостовом) конце тела.

Рассмотреть реснички на живом материале почти невозможно. Заметными они становятся, если на предметное стекло у края покровного поместить каплю раствора иода. Раствор проникает под покровное стекло, убивает парамеций и окрашивает реснички, хорошо просматриваемые при большом увеличении (рис. 12).

Задание 2 . При большом увеличении микроскопа на временно изготовленном микропрепарате рассмотрите строение ротового аппарата инфузории туфельки (рис. 13).

Исходная информация

Инфузория туфелька имеет постоянную форму тела, которую обеспечивает эластичная прочная пелликула. В естественной среде форма тела парамеций может изменяться из-за ряда обстоятельств (как называется это явление?).

Чтобы проследить временные изменения формы тела парамеции, необходимо приготовить временный микропрепарат. Для этого на предметное стекло наносят каплю культуры живых инфузорий. Препаровальной иглой расщепляют кусочек ваты, помещают его в каплю культуры инфузорий и накрывают покровным стеклом. Инфузории, оказавшись между переплетающимися нитями ваты, замедляют движение и становятся доступными для наблюдения под микроскопом. В случае ухода простейших из поля наблюдения кусочком фильтровальной бумаги оттягивают влагу из-под покровного стекла. При этом инфузории замедляют движение и даже останавливаются.


Рис. 13. Схема строения ротового аппарата парамеции:
1 - цитостом; 2 - перистом; 3 - ротовая полость, в которой расположены базальные части мембраны и мембранелл; 4 - цитофаринкс (глотка)

Интересны наблюдения за одноклеточными, стремящимися преодолеть препятствия. Натолкнувшись на непреодолимую преграду, инфузории отодвигаются назад, разворачиваются примерно под углом 30 - 40° и вновь делают попытку протиснуться сквозь препятствие. Проникновение сквозь препятствие часто сопровождается изменением формы тела. Парамеции могут изгибаться, утончаться, могут одновременно закручивать концы тела в разных плоскостях в виде восьмерки. Но такой процесс всегда заканчивается возвратом формы тела в естественное состояние.

У инфузории туфельки на одной из боковых сторон, вблизи центра тела, имеется углубление - перистомальная впадина, или перистом. Перистом вдается внутрь тела, образуя предротовую полость, переходящую в клеточный рот, или цитостом, и заканчивается слепо замкнутой глоткой.

Задание 3 . Рассмотрите на временно изготовленном микропрепарате образование пищеварительных вакуолей в теле инфузории туфельки (рис. 14). Обратите внимание на количество возникающих пищеварительных вакуолей за 15 - 20 мин.

Исходная информация

Инфузории туфельки питаются бактериями. При благоприятных условиях пища поглощается непрерывно. Три ряда тесно расположенных ресничек в области перистома образуют мембранеллы. Своими постоянными движениями они подгоняют пищу в рот. Из ротового отверстия пищевые частицы далее транспортируются в ротовую полость и оседают на дне глотки. По мере накопления пищи, ее объема, массы и действия факторов среды на дне глотки образуется пищеварительная вакуоль. Каждая пищеварительная вакуоль отшнуровывается и оказывается в эндоплазме. Постоянным током цитоплазмы вакуоль перемещается к заднему концу тела. В вакуолях происходит пищеварение. Они образуются каждые 1,5 - 2 мин. Длительность переваривания пищи зависит от качества пищи и при комнатной температуре может продолжаться около 1 ч. При благоприятных условиях количество одновременно функционирующих вакуолей в эндоплазме парамеции может достигать 20.


Рис. 14. Пищеварительные вакуоли у парамеций в растворе туши:1 - сократительная вакуоль; 2 - цитоплазма; 3 - пелликула; 4 - пищеварительные вакуоли; 5 - раствор туши

Непрерывное заглатывание инфузорией любых взвешенных в воде частиц позволяет пронаблюдать процесс образования вакуолей, их количество, расположение, движение в эндоплазме.

Для приготовления временного микропрепарата на предметное стекло помещают каплю культуры с живыми инфузориями и рядом капают каплю туши. Препаровальной иглой соединяют капли водным мостиком и часть туши смешивают с каплей культуры. При малом увеличении микроскопа следят за равномерным распределением туши в капле воды. Временный микропрепарат просматривают через 10-15 мин (покровным стеклом не накрывают). В эндоплазме парамеции отчетливо наблюдают округлые черные пищеварительные вакуоли, образовавшиеся в результате заглатывания микроскопических частиц туши.

Задание 4 . Рассмотрите на временно изготовленном микропрепарате инфузории туфельки процесс выбрасывания трихоцист (рис. 15), а также форму тела инфузории, количество ядер, их расположение в клетке.

Зарисуйте внешний вид инфузории туфельки с выброшенными трихоцистами. Обозначьте макро- и микронуклеус, пищеварительные вакуоли, цитоплазму, пелликулу, выброшенные трихоцисты.

Исходная информация

На предметное стекло помещают каплю культуры с живыми инфузориями и добавляют по одной капле раствора метиленовой сини и уксусной кислоты, а затем накрывают покровным стеклом. Раствор уксусной кислоты готовят следующим образом: к 10 см 3 воды добавляют 5 - 6 капель 80 %-й уксусной кислоты. Метиленовая синь окрасит ядра парамеций. Под действием раствора уксусной кислоты инфузории выбрасывают трихоцисты и затем погибают. При большом увеличении микроскопа трихоцисты просматриваются в виде длинных, тонких переплетающихся нитей, торчащих на (или около) поверхности тела.

Задание 5 . Проследите ответную реакцию инфузорий на действие химических раздражителей. Определите скорость движения инфузорий из одной капли в другую.


Рис. 15. Инфузория туфелька, окрашенная метилгрюном (при большом увеличении):
1 - выброшенные трихоцисты; 2 - макронуклеус; 3 - цитоплазма; 4 - пелликула; 5 - пищеварительные вакуоли

Исходная информация

Инфузории реагируют на внешние раздражители всей поверхностью тела. Реакция на благоприятный раздражитель сопровождается движением к источнику раздражения и называется положительным таксисом. От неблагоприятного раздражителя инфузории уплывают - отрицательный таксис. Для парамеций характерны реакции на химические раздражители - хемотаксис; световые - фототаксис; температурные - термотаксис и др.

Для наблюдения за проявлением отрицательного хемотаксиса необходимо приготовить временный микропрепарат. На предметное стекло с помощью пипетки помещают 1 - 2 капли культуры с живыми туфельками и на расстоянии 1 см от капли - такой же объем чистой воды. Препаровальной иглой соединяют капли водяным мостиком. При этом инфузории не уплывают из капли культуры. Этой же иглой к краю культуры с простейшими пододвигают кристаллик поваренной соли. По мере растворения кристаллика соли концентрация ее в капле культуры повышается, и условия среды становятся неблагоприятными. Большинство инфузорий устремляется по водному мостику в каплю чистой воды. Особи, не нашедшие водного мостика и не успевшие уплыть, погибают.

Этот несложный эксперимент демонстрирует реакцию инфузории на химический раздражитель.

Задание 6 . Рассмотрите на рис. 16 органоиды парамеции, обозначенные цифрами.

Зарисуйте общее строение парамеции и ее органоиды. Обозначьте реснички, пищеварительные вакуоли, микро- и макронуклеус, ротовое отверстие, глотку, резервуар сократительной вакуоли, трихоцисты, анальную вакуоль.


Рис. 16. Инфузория туфелька. Общая организация in vivo:
1 - реснички; 2 - пищеварительные вакуоли; 3 - микронуклеус; 4 - ротовое отверстие; 5 - глотка; 6 - содержимое анальной вакуоли; 7 - резервуар сократительной вакуоли; 8 - макронуклеус; 9 - трихоцисты

Задание 7 . В капле культуры простейших найдите инфузорий, изображенных на рис. 17 (1-14). Определите их видовую принадлежность.


Рис. 17. Инфузории (при большом увеличении):
Я - ядро (макронуклеус); Р - ротовое отверстие; ПВ - пищеварительные вакуоли; СВ - сократительная вакуоль; Тр - трихоцисты

ПРОВЕРЬТЕ СЕБЯ

Задание 8 . Заполните табл. 4, используя предложенные варианты ответов и дополнительную литературу.

Таблица 4

Некоторые экологические особенности инфузорий

Виды инфузорий Образ жизни Способы питания Отряд
Ихтиофтириус
Триходина
Стентор полиморфус
Стилонихия
Нассула
Аллантозома
Токоприа
Тинтиннида
Спиростомум
Дидиний
Сувойка (одиночная)
Бурсария
Дилептус
Балантидий

Варианты ответов:

Способы питания : всеядные; растительноядные; хищные, или плотоядные; питающиеся всей поверхностью тела, соками хозяина; во взрослом состоянии не питаются.

Задание 9 . Ответьте на следующие вопросы.

  1. Какие виды взрослых инфузорий не имеют ресничного аппарата? Как они питаются?
  2. Способны ли инфузории образовывать колонии? Если да, то приведите пример.
  1. Чем отличается процесс бесполого размножения инфузории туфельки от бесполого размножения амеб и жгутиконосцев?
  2. Почему особь, образовавшуюся после конъюгации, у инфузории туфельки можно рассматривать как новое половое поколение?
  3. Какие виды инфузорий "разборчивы" в отношении своей жертвы?
  4. Какие виды инфузорий размножаются бродяжками?
  5. Для каких инфузорий характерно явление полиморфизма? Каково их строение и размножение?

Вопросы для обсуждения

  1. Каковы особенности движения инфузорий?
  2. Почему инфузории считают высокоспециализированными одноклеточными?
  3. Каковы функции макронуклеуса и микронуклеуса?
  4. Чем обусловлена постоянная форма тела инфузорий?
  5. Какие типы размножения характерны для инфузории туфельки?
  6. Как осуществляется у них процесс питания и пищеварения?
  7. Каково строение и значение сократительных вакуолей инфузорий?
  8. Где и как удаляются из организма инфузории туфельки непереваренные частицы пищи?
  9. Чем обусловлено быстрое изменение формы тела у инфузории трубач?
  10. Каковы особенности ядерного аппарата инфузории трубач?
  11. Как размножаются сувойки?
  12. Чем отличается стилонихия от инфузории туфельки?
  13. Почему сократительные вакуоли есть только у пресноводных инфузорий?
  14. Имеются ли защитные приспособления у инфузории туфельки?
  15. Способна ли инфузория туфелька к "научению"?

Объясните значение следующих терминов: перистом, реснички, эктоплазма, эндоплазма, пелликула, трихоцисты, глотка, порошица, макронуклеус, микронуклеус, нейрофаны, аутогамия, эндомиксис, синкарион, редукционное деление, эквационное деление, гаметогамия, кариогамия.

60. Чем характеризуются простейшие?
Примитивное строение, одна клетка, выполняющая функции организма. Они имеют микроскопические размеры и органоиды специального назначения.

61. Рассмотрите изображенных на рисунке представителей подцарства Одноклеточные. Напишите, к каким типам одноклеточных они относятся. Дайте краткую характеристику этих типов.

Саргожгутиконосцы : наиболее древний, просто организованный тип, со слабо развитым скелетом. Форма тела непостоянна, органоиды специального назначения отсутствуют.
Инфузории: органоид движения – реснички, имеют два ядра, глотку, порошицу, сократительные вакуоли.

62. Изучите таблицу «Простейшие». Зарисуйте схему строения амебы. Подпишите названия частей ее тела. Какую роль в процессе жизнедеятельности они выполняют?

Ядро является носителем генетической информации;
Ложноножки служат для перемещения и захвата пищи;
Сократительная вакуоль выводит излишки жидкости, а пищеварительная учувствует в процессе переваривания пищи.

63. Рассмотрите рисунок. Напишите названия органоидов, обозначенных цифрами. Какова их роль в процессе жизнедеятельности?

1. Сократительная вакуоль
2. Большое ядро
3. Реснички
4. Маленькое ядро
5. Глотка
6. Пищеварительная вакуоль
7. Порошица

64. Заполните таблицу.

ПРОЦЕССЫ ЖИЗНЕДЕЯТЕЛЬНОСТИ ПРОСТЕЙШИХ


65. Заполните таблицу

СХОДСТВО И РАЗЛИЧИЕ СТРОЕНИЯ ПРОСТЕЙШИХ


66. Заполните таблицу.

ЗНАЧЕНИЕ ПРОСТЕЙШИХ В ПРИРОДЕ


67. Выполните лабораторную работу «Строение инфузории туфельки».

1. Рассмотрите невооруженным глазом культуру инфузории туфельки. Видны ли инфузории? В какой части пробирки их больше?
Чтобы подробно рассмотреть инфузорию туфельку нужен микроскоп, хотя невооруженным глазом она тоже видна. Их больше в части с большим количеством влаги.
2. Поместите на предметное стекло каплю с культурой инфузории туфельки С помощью лупы рассмотрите особенности формы ее тела. Сделайте рисунок.

Цель:

Оборудование:

Ход работы

    увиденные части тела.

  1. Дополнение.

    Лабораторная работа «Строение инфузории-туфельки»

    Цель: Изучить особенности строения одноклеточных организмов

    Оборудование: Микроскоп, предметные и покровные стекла, вата, культура инфузория-туфелька.

    Ход работы

    1. Приготовьте микропрепарат: на предметное стекло с помощью пипетки поместите каплю культуры инфузории-туфельки; положите в каплю несколько волокон ваты, накройте ее покровным стеклом.

      Положите микропрепарат на предметный столик микроскопа и проведите наблюдение сначала под малым увеличением. Найдите в поле зрения микроскопа инфузорию-туфельку, определите ее форму тела, передний (тупой) и задний (заостренный) концы тела.

      Проведите наблюдение за характером передвижения инфузории-туфельки, которое сопровождается вращением тела вокруг его продольной оси.

      Рассмотрите инфузорию-туфельку под большим увеличением, найдите на поверхности ее тела реснички и установите, какую роль они играют в передвижении инфузории-туфельки.

      Найдите сократительные вакуоли - они расположены в передней и задней частях тела; рассмотрите цитоплазму.

      Зарисуйте инфузорию-туфельку в тетради и подпишите увиденные части тела.

      Заполните таблицу: «Органоиды и их функции»

      Какие виды одноклеточных животных можно увидеть в поле зрения микроскопа, кроме Инфузории-туфельки?
    2. Подвести итог работе, сделать вывод.

      Дополнение. Название «инфузория» происходит от латинского слова «инфузум», что означает влитый куда-либо, т. к. впервые инфузории были обнаружены в воде, настоянной на травах. У инфузории-туфельки одноклеточное тело, покрытое плазматической мембраной, с внутренней стороны окружено эластичной и тонкой пелликулой. Вся поверхность тела покрыта ресничками, которые располагаются косыми рядами. Такое расположение ресничек способствует вращению тела вдоль продольной оси при движении. Отверстия – на поверхности тела проходящие, в пелликулу. Для удержания пищи или при опасности через эти отверстия выбрасываются трихоцисты, похожие на тонкие стрелы. Внутренняя полость заполнена цитоплазмой, в которой находятся малое и большое ядро, сократительная вакуоль, пищеварительная вакуоль. От переднего конца и до середины тела проходит околоротовая воронка, и, сужаясь, переходит в глотку. Глотка заканчивается клеточным ртом. Две сократительные вакуоли инфузории туфельки сокращаются поочередно. Продукты жизнедеятельности и вода собираются из цитоплазмы и по канальцам поступают к сократительным вакуолям. За процесс размножения отвечает малое ядро и дает начало большим ядрам.

Все помнят классическое изображение инфузории-туфельки из учебника биологии, копируемого из издания в издание. Однако немногие задумываются, почему честь представлять неисчислимое количество одноклеточных организмов - простейших и бактерий - выпала именно инфузории-туфельке. Фото , полученное с помощью одного из микроскопов и видеоокуляра Альтами, позволит детально рассмотреть образец высшего совершенства элементарной ячейки жизни.

Прежде чем мы рассмотрим готовый микропрепарат инфузории-туфельки, строение ее тела-клетки под микроскопом , узнаем, что представляет собой это простейшее в среде обитания. Какую роль выполняет инфузория-туфелька в природе, какое место занимает в пищевой цепочке?

Инфузория или парамеция хвостатая (от лат. Paramecium caudatum) обитает в пресных водах. Свое название одноклеточное получило за удлиненные реснички на задней половине тельца. Между ресничками, которых насчитывается по всему тельцу более десяти тысяч, расположены трихоцисты или мелкие веретеновидные тельца. Они представляют собой органеллы (органы у многоклеточных) нападения и защиты, которые с силой выбрасываются и вонзаются в вражеское тело или в жертву. Сбоку на тельце инфузории находится предротовое углубление, переходящее в рот. Пищу инфузория переваривает образуя специальные пищеварительные вакуоли, отделяемые от глотки, которые проходят через весь организм, увлекаемые током цитоплазмы. При благоприятных температурных условиях и обилии пищи вакуоли образуются каждую минуту. Функцию выделения выполняют две сократительные вакуоли. Инфузория питается другими простейшими, одноклеточными водорослями, и сама служит кормом для личинок рыб и амфибий. Именно поэтому простейших рода Paramecium интенсивно выращивают на рыболовных хозяйствах, а также в аквариумистике.

Теперь можем приступить к исследованию инфузории под микроскопом . Не беда, если готового микропрепарата не окажется под рукой. Любой аквариумист поделится с вами пару-тройкой секретов разведения инфузорий-туфелек либо самими особями, вместе с водой из аквариума. Также можно добыть простейших в любом стоячем водоеме и для получения критической массы, достаточной для исследования, создать наиболее благоприятные условия для размножения туфелек. Эти простейшие легко разводятся в домашних условиях на высушенных банановых корках или настое сенной трухи.

Мы поделимся с вами самым простым, но от этого не менее эффективным, способом разведения инфузории на кусочке моркови. Замоченный кусочек моркови (грамм на литр) долго не разлагается бактериями, а вода остается прозрачной. Емкость помещается в темное место с температурой чуть выше комнатной. Через несколько суток можно увидеть невооруженным взглядом белесоватую взвесь, окружающую морковь, которая представляет собой скопление инфузорий-туфелек, хаотично плавающих в толще воды.

Размножается инфузория-туфелька один-два раза в сутки изначально бесполым способом, то есть делением клетки пополам по экватору. Через несколько таких делений клетка готова размножаться половым способом — сложным обменом частицами малого ядра. Причем при половом размножении число особей остается прежним, не увеличивается, но клетка получает усовершенствованную способность приспосабливаться к окружающим условиям среды.

Далее помещаем капельку воды между предметным и покровным стеклом. Живые инфузории под микроскопом , уже при 80-тикратном увеличении, представляют собой не перестающее двигаться скопище клеток длиной 0,2—0,3 мм. Поэтому строение животной клетки под микроскопом можно изучить лишь на погибающем от высыхания простейшем. Подсыхающие инфузории под микроскопом выглядят более одутловатыми и практически не двигаются. Меняя объектив, устанавливаем увеличение в 200 раз: картина та же, но крупнее, различимо внутренне строение простейших.

Двухмерное изображение простейшего не соответствует тому, что вы увидите в объективе. Клетка под микроскопом вовсе не похожа на пресловутую дамскую туфельку или веретено, как изображают инфузорию художники-анималисты. Форма тела одноклеточного организма имеет «хребет» и в поперечном разрезе оказывается не овалом, а ромбом. По-видимому, выступ усиливает гидродинамику и улучшает маневренность инфузории. Овальную форму тельце простейшего принимает лишь при усыхании.

Хоть инфузория-туфелька под микроскопом выглядит несколько иначе, чем на иллюстрации из школьного учебника, все же, при восьмисоткратном увеличении можно увидеть основные элементы строения животной клетки. Под микроскопом различимы ядро, цитоплазма и другие форменные элементы животной клетки. Состоящая из полисахаридов и белков оболочка клетки под микроскопом (световым) не видна. Ее строение смогут изучить счастливые обладатели электронного микроскопа.

Мы уверены, теперь вы будете проводить целые часы с микроскопом Альтами, ведя наблюдение за жизнью отнюдь не примитивного простейшего со сложным латинским названием Paramecium caudatum или инфузория-туфелька. Фото , которые вы сделаете с помощью видеоокуляра Альтами, будут напоминать вам о том, что природа совершенна.