Свойства синуса, косинуса, тангенса и котангенса угла. Свойства синуса, косинуса, тангенса и котангенса Вычислить синус 20 с помощью единичной окружности

Отсчёт углов на тригонометрическом круге.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Он почти такой, как в предыдущем уроке. Есть оси, окружность, угол, всё чин-чинарём. Добавлены номера четвертей (в уголках большого квадрата) - от первой, до четвёртой. А то вдруг кто не знает? Как видите, четверти (их ещё называют красивым словом "квадранты") нумеруются против хода часовой стрелки. Добавлены значения угла на осях. Всё понятно, никаких заморочек.

И добавлена зелёная стрелка. С плюсом. Что она означает? Напомню, что неподвижная сторона угла всегда прибита к положительной полуоси ОХ. Так вот, если подвижную сторону угла мы будем крутить по стрелке с плюсом , т.е. по возрастанию номеров четвертей, угол будет считаться положительным. Для примера на картинке показан положительный угол +60°.

Если будем откладывать углы в обратную сторону, по ходу часовой стрелки, угол будет считаться отрицательным. Наведите курсор на картинку (или коснитесь картинки на планшете), увидите синюю стрелку с минусом. Это - направление отрицательного отсчёта углов. Для примера показан отрицательный угол (- 60°). А ещё вы увидите, как поменялись циферки на осях... Я их тоже перевёл в отрицательные углы. Нумерация квадрантов не меняется.

Вот тут, обычно, начинаются первые непонятки. Как так!? А если отрицательный угол на круге совпадёт с положительным!? Да и вообще, получается что, одно и то же положение подвижной стороны (или точки на числовой окружности) можно обозвать как отрицательным углом, так и положительным!?

Да. Именно так. Скажем, положительный угол 90 градусов занимает на круге точно такое же положение, что и отрицательный угол в минус 270 градусов. Положительный угол, к примеру, +110° градусов занимает точно такое же положение, что и отрицательный угол -250°.

Не вопрос. Всяко правильно.) Выбор положительного или отрицательного исчисления угла зависит от условия задания. Если в условии ничего не сказано открытым текстом про знак угла, (типа "определить наименьший положительный угол" и т.д.), то работаем с удобными нам величинами.

Исключением (а как без них?!) являются тригонометрические неравенства, но там мы эту фишку освоим.

А теперь вопрос вам. Как я узнал, что положение угла 110° совпадает с положением угла -250°?
Намекну, что это связано с полным оборотом. В 360°... Непонятно? Тогда рисуем круг. Сами рисуем, на бумаге. Отмечаем угол примерно 110°. И считаем , сколько остается до полного оборота. Останется как раз 250°...

Уловили? А теперь - внимание! Если углы 110° и -250° занимают на круге одно и то же положение, то что? Да то, что у углов 110° и -250° совершенно одинаковые синус, косинус, тангенс и котангенс!
Т.е. sin110° = sin(-250°), ctg110° = ctg(-250°) и так далее. Вот это уже действительно важно! И само по себе - есть масса заданий, где надо упростить выражения, и как база для последующего освоения формул приведения и прочих премудростей тригонометрии.

Понятное дело, 110° и -250° я взял наобум, чисто для примера. Всё эти равенства работают для любых углов, занимающих одно положение на круге. 60° и -300°, -75° и 285°, ну и так далее. Отмечу сразу, что углы в этих парочках - разные. А вот тригонометрические функции у них - одинаковые.

Думаю, что такое отрицательные углы вы поняли. Это совсем просто. Против хода часовой стрелки - положительный отсчёт. По ходу - отрицательный. Считать угол положительным, или отрицательным зависит от нас . От нашего желания. Ну, и ещё от задания, конечно... Надеюсь, вы поняли и как переходить в тригонометрических функциях от отрицательных углов к положительным и обратно. Нарисовать круг, примерный угол, да посмотреть, сколько недостаёт до полного оборота, т.е. до 360°.

Углы больше 360°.

Займемся углами которые больше 360°. А такие бывают? Бывают, конечно. Как их нарисовать на круге? Да не проблема! Допустим, нам надо понять, в какую четверть попадёт угол в 1000°? Легко! Делаем один полный оборот против хода часовой стрелки (угол-то нам дали положительный!). Отмотали 360°. Ну и мотаем дальше! Ещё оборот - уже получилось 720°. Сколько осталось? 280°. На полный оборот не хватает... Но угол больше 270° - а это граница между третьей и четвёртой четвертью. Стало быть наш угол в 1000° попадает в четвёртую четверть. Всё.

Как видите, это совсем просто. Ещё раз напомню, что угол 1000° и угол 280°, который мы получили путём отбрасывания "лишних" полных оборотов - это, строго говоря, разные углы. Но тригонометрические функции у этих углов совершенно одинаковые ! Т.е. sin1000° = sin280°, cos1000° = cos280° и т.д. Если бы я был синусом, я бы не заметил разницы между этими двумя углами...

Зачем всё это нужно? Зачем нам переводить углы из одного в другой? Да всё за тем же.) С целью упрощения выражений. Упрощение выражений, собственно, главная задача школьной математики. Ну и, попутно, голова тренируется.)

Ну что, потренируемся?)

Отвечаем на вопросы. Сначала простые.

1. В какую четверть попадает угол -325° ?

2. В какую четверть попадает угол 3000° ?

3. В какую четверть попадает угол -3000° ?

Есть проблемы? Или неуверенность? Идём в Раздел 555, Практическая работа с тригонометрическим кругом. Там, в первом уроке этой самой "Практической работы..." всё подробненько... В таких вопросах неуверенности быть не должно!

4. Какой знак имеет sin555° ?

5. Какой знак имеет tg555° ?

Определили? Отлично! Сомневаетесь? Надо в Раздел 555... Кстати, там научитесь рисовать тангенс и котангенс на тригонометрическом круге. Очень полезная штучка.

А теперь вопросы помудрёнее.

6. Привести выражение sin777° к синусу наименьшего положительного угла.

7. Привести выражение cos777° к косинусу наибольшего отрицательного угла.

8. Привести выражение cos(-777°) к косинусу наименьшего положительного угла.

9. Привести выражение sin777° к синусу наибольшего отрицательного угла.

Что, вопросы 6-9 озадачили? Привыкайте, на ЕГЭ и не такие формулировочки встречаются... Так и быть, переведу. Только для вас!

Слова "привести выражение к..." означают преобразовать выражение так, чтобы его значение не изменилось, а внешний вид поменялся в соответствии с заданием. Так, в задании 6 и 9 мы должны получить синус, внутри которого стоит наменьший положительный угол. Всё остальное - не имеет значения.

Ответы выдам по порядку (в нарушение наших правил). А что делать, знака всего два, а четверти всего четыре... Не разбежишься в вариантах.

6. sin57°.

7. cos(-57°).

8. cos57°.

9. -sin(-57°)

Предполагаю, что ответы на вопросы 6 -9 кое-кого смутили. Особенно -sin(-57°) , правда?) Действительно, в элементарных правилах отсчёта углов есть место для ошибок... Именно поэтому пришлось сделать урок: "Как определять знаки функций и приводить углы на тригонометрическом круге?" В Разделе 555. Там задания 4 - 9 разобраны. Хорошо разобраны, со всеми подводными камнями. А они тут есть.)

В следующем уроке мы разберёмся с загадочными радианами и числом "Пи" . Научимся легко и правильно переводить градусы в радианы и обратно. И с удивлением обнаружим, что этой элементарной информации на сайте уже хватает , чтобы решать некоторые нестандартные задачки по тригонометрии!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Тип урока: систематизации знаний и промежуточного контроля.

Оборудование: тригонометрический круг, тесты, карточки с заданиями.

Цели урока: систематизировать изученный теоретический материал по определениям синуса, косинуса, тангенса угла; проверить степень усвоения знаний по данной теме и применение на практике.

Задачи:

  • Обобщить и закрепить понятия синуса, косинуса и тангенса угла.
  • Формировать комплексное представление о тригонометрических функциях.
  • Способствовать выработке у учащихся желания и потребности изучения тригонометрического материала; воспитывать культуру общения, умение работать в группах и потребности в самообразовании.

«Кто смолоду делает и думает сам, тот
становится потом, надёжнее, крепче, умнее.

(В.Шукшин)

ХОД УРОКА

I. Организационный момент

Класс представлен тремя группами. В каждой группе консультант.
Учитель сообщает тему, цели и задачи урока.

II. Актуализация знаний (фронтальная работа с классом)

1) Работа в группах по заданиям:

1. Сформулировать определение sin угла.

– Какие знаки имеет sin α в каждой координатной четверти?
– При каких значениях имеет смысл, выражение sin α, и какие значения оно может принимать?

2. Вторая группа те – же вопросы для cos α.

3. Третья группа ответы готовит по тем же вопросам tg α и ctg α.

В это время трое учащихся самостоятельно работают у доски по карточкам (представители разных групп).

Карточка № 1.

Практическая работа.
С помощью единичной окружности вычислить для угла 50 , 210 и – 210 значения sin α, cos α и tg α.

Карточка № 2.

Определить знак выражения: tg 275; cos 370; sin 790; tg 4,1 и sin 2.

Карточка № 3.

1) Вычислить:
2) Сравнить: cos 60 и cos 2 30 – sin 2 30

2) Устно:

а) Предложен ряд чисел: 1; 1,2; 3; , 0, , – 1. Среди них есть лишние. Какое свойство sin α или cos α могут выражать эти числа (Может ли sin α или cos α принимать эти значения).
б) Имеет ли смысл выражение: cos (–); sin 2; tg 3: ctg (– 5); ; ctg0;
ctg (– π). Почему?
в) Существует ли наименьшее и наибольшее значение sin или cos, tg, ctg.
г) Верно ли?
1) α = 1000 является углом II четверти;
2) α = – 330 является углом IV четверти.
д) Числам соответствует одна и та же точка на единичной окружности.

3) Работа у доски

№ 567 (2; 4) – Найти значение выражения
№ 583 (1-3) Определить знак выражения

Домашнее задание: таблица в тетради. № 567(1, 3) № 578

III. Усвоение дополнительных знаний. Тригонометрия в ладони

Учитель: Оказывается, значения синусов и косинусов углов «находятся» на вашей ладони. Протяните руку (любую) и разведите как можно сильнее пальцы (как на плакате). Приглашается один ученик. Мы измеряем углы между нашими пальцами.
Берется треугольник, где есть угол в 30, 45 и 60 90 и прикладываем вершину угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону совмещаем с мизинцем, а другую сторону – с одним из остальных пальцев.
Оказывается между мизинцем и большим пальцем угол 90, между мизинцем и безымянным – 30, между мизинцем и средним – 45, между мизинцем и указательным – 60. И это у всех людей без исключения

мизинец № 0 – соответствует 0,
безымянный № 1 – соответствует 30,
средний № 2 – соответствует 45,
указательный № 3 – соответствует 60,
большой № 4 – соответствует 90.

Таким образом, у нас на руке 4 пальца и запомним формулу:

№ пальца

Угол

Значение

Это просто мнемическое правило. Вообще значение sin α или cos α надо знать наизусть, но иногда это правило поможет в трудную минуту.
Придумайте правило для cos (углы без изменения, а отсчета от большого пальца). Физическая пауза, связанная со знаками sin α или cos α.

IV. Проверка усвоений ЗУН

Самостоятельная работа с обратной связью

Каждый ученик получает тест (4 варианта) и лист с ответами для всех одинаковый.

Тест

Вариант 1

1) При каком угле поворота радиус займет то же положение, что и при повороте на угол 50.
2) Найдите значение выражения: 4cos 60 – 3sin 90.
3) Какое из чисел меньше нуля: sin 140, cos 140, sin 50, tg 50.

Вариант 2

1) При каком угле поворота радиус займет тоже положении, что и при повороте на угол 10.
2) Найти значение выражения: 4cos 90 – 6sin 30.
3) Какое из чисел больше нуля: sin 340, cos 340, sin 240, tg (– 240).

Вариант 3

1) Найдите значение выражения: 2ctg 45 – 3cos 90.
2) Какое из чисел меньше нуля: sin 40, cos (– 10), tg 210, sin 140.
3) Углом какой четверти является угол α, если sin α > 0, cos α < 0.

Вариант 4

1) Найдите значение выражения: tg 60 – 6ctg 90.
2) Какое из чисел меньше нуля: sin(– 10), cos 140, tg 250, cos 250.
3) Углом какой четверти является угол α, если ctg α< 0, cos α> 0.

А
0

Б
Sin50

В
1

Г
– 350

Д
– 1

Е
Cos (– 140)

Ж
3

З
310

И
Cos 140

Л
350

М
2

Н
Cos 340

О
– 3

П
Cos 250

Р

С
Sin 140

Т
– 310

У
– 2

Ф
2

Х
Tg 50

Ш
Tg 250

Ю
Sin 340

Я
4

(слово – тригонометрия ключевое)

V. Сведения из истории тригонометрии

Учитель: Тригонометрия – это достаточно важный раздел математики для жизни человека. Современный вид тригонометрии придал крупнейший математик 18 столетия Леонард Эйлер – швейцарец по происхождению долгие годы работавший в России и являвшийся членом Петербургской академии наук. Он ввел известные определения тригонометрических функций сформулировал и доказал известные формулы, мы их учить будем позже. Жизнь Эйлера очень интересна и я советую познакомиться с ней по книге Яковлева «Леонард Эйлер».

(Сообщение ребят по данной теме)

VI. Подведение итогов урока

Игра «Крестики – нолики»

Участвуют двое учащихся самых активных. Их поддерживают группы. Решение заданий записывается в тетрадь.

Задания

1) Найти ошибку

а) sin 225 = – 1,1 в) sin 115 < О
б) cos 1000 = 2 г) cos (– 115) > 0

2) Выразите в градусах угол
3) Выразите в радианах угол 300
4) Какое наибольшее и наименьшее значение может иметь выражение: 1+ sin α;
5) Определите знак выражения: sin 260, cos 300.
6) В какой четверти числовой окружности расположена точка
7) Определите знаки выражения: cos 0,3π, sin 195, ctg 1, tg 390
8) Вычислите:
9) Сравнить: sin 2 и sin 350

VII. Рефлексия урока

Учитель: Где мы можем встретиться с тригонометрией?
На каких уроках в 9 классе, да и сейчас вы применяете понятия sin α, cos α; tg α; ctg α и с какой целью?

Вообще, этот вопрос заслуживает особого внимания, но здесь все просто: у угла градусов и синус и косинус положительны (смотри рисунок), тогда берем знак «плюс».

Теперь попробуй на основе вышеизложенного найти синус и косинус углов: и

Можно схитрить: в частности для угла в градусов. Так как если один угол прямоугольного треугольника равен градусам, то второй - градусам. Теперь вступают в силу знакомые тебе формулы:

Тогда так как, то и. Так как, то и. C градусами все еще проще: так если один из углов прямоугольного треугольника равен градусам, то и другой тоже равен градусам, а значит такой треугольник равнобедренный.

Значит, его катеты равны. А значит равны его синус и косинус.

Теперь найди сам по новому определению (через икс и игрек!) синус и косинус углов в градусов и градусов. Здесь уже никакие треугольники нарисовать не получится! Уж слишком они будут плоские!

У тебя должно было получиться:

Тангенс и котангенс ты можешь отыскать самостоятельно по формулам:

Обрати внимание, что на ноль делить нельзя!!

Теперь все полученные числа можно свести в таблицу:

Здесь приведены значения синуса, косинуса, тангенса и котангенса углов I четверти . Для удобства углы приведены как в градусах, так и в радианах (но ты-то теперь знаешь связь между ними!). Обрати внимание на 2 прочерка в таблице: а именно у котангенса нуля и тангенса градусов. Это неспроста!

В частности:

Теперь давай обобщим понятие синус и косинус на совсем произвольный угол. Я рассмотрю здесь два случая:

  1. Угол лежит в пределах от до градусов
  2. Угол больше градусов

Вообще говоря, я скривил немного душой, говоря про «совсем все» углы. Они бывают также и отрицательными! Но этот случай мы с тобой рассмотрим в другой статье. Вначале остановимся на первом случае.

Если угол лежит в 1 четверти - то тут все понятно, мы этот случай уже рассмотрели и даже таблицы нарисовали.

Теперь же пусть наш угол больше градусов и не больше чем. Это значит, что он расположен либо во 2, либо в 3 или же в 4 четверти.

Как мы поступаем? Да точно так же!

Давай рассмотрим вместо вот такого случая...

...вот такой:

То есть рассмотрим угол, лежащий во второй четверти. Что мы можем сказать про него?

У точки, которая является точкой пересечения луча и окружности по-прежнему имеет 2 координаты (ничего сверхъестественного, правда?). Это координаты и.

Причем первая координата отрицательная, а вторая - положительная! Это значит, что у углов второй четверти косинус отрицателен, а синус - положителен!

Удивительно, правда? До этого мы еще ни разу не сталкивались с отрицательным косинусом.

Да и в принципе этого не могло быть, когда мы рассматривали тригонометрические функции как отношения сторон треугольника. Кстати, подумай, у каких углов косинус равен? А у каких равен синус?

Аналогично можно рассмотреть углы во всех остальных четвертях. Я лишь напомню, что угол отсчитывается против часовой стрелки! (так, как это показано на последнем рисунке!).

Конечно, можно и отсчитывать в другую сторону, но вот подход к таким углам будет уже несколько другой.

Исходя из приведенных выше рассуждений, можно расставить знаки у синуса, косинуса, тангенса (как синус деленный на косинус) и котангенса (как косинус деленный на синус) для всех четырех четвертей.

Но еще раз повторюсь, нет смысла запоминать этот рисунок. Все, что тебе нужно знать:

Давай мы с тобой немного потренируемся. Совсем простые задачки:

Выяснить, какой знак имеют следующие величины:

Проверим?

  1. градусов - это угол, больший и меньший, а значит лежит в 3 четверти. Нарисуй любой угол в 3 четверти и посмотри, какой у него игрек. Он окажется отрицательным. Тогда.
    градусов - угол 2 четверти. Синус там положительный, а косинус - отрицательный. Плюс делить на минус - будет минус. Значит.
    градусов - угол, больший и меньший. Значит, он лежит в 4 четверти. У любого угла четвертой четверти «икс» будет положительным, значит
  2. C радианами работаем аналогично: это угол второй четверти (так как и. Синус второй четверти положительный.
    .
    , это угол четвертой четверти. Там косинус положительный.
    - угол снова четвертой четверти. Там косинус положительный, а синус - отрицательный. Тогда тангенс будет меньше нуля:

Быть может, тебе сложно определять четверти по радианам. В таком случае, ты всегда можешь перейти к градусам. Ответ, разумеется, будет точно таким же.

Теперь я хотел бы очень кратко остановиться вот еще на каком моменте. Давай снова вспомним основное тригонометрическое тождество.

Как я уже говорил, из него мы можем выразить синус через косинус или наоборот:

На выбор знака же будет влиять только та четверть, в которой находится наш угол альфа. На последние две формулы существует масса задач в ЕГЭ, например, вот таких:

Задача

Найдите, если и.

На самом деле, это задача на четверть! Смотри, как она решается:

Решение

Так как, то подставим сюда значение, тогда. Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол. По условию задачи: . Какая это четверть? Четвертая. Каков знак косинуса в четвертой четверти? Косинус в четвертой четверти положительный. Тогда и нам остается выбрать знак «плюс» перед. , тогда.

Я не буду сейчас подробно останавливаться на таких задачах, их подробный разбор ты можешь найти в статье « ». Я лишь хотел указать тебе на важность того, какой знак принимает та или иная тригонометрическая функция в зависимости от четверти.

Углы больше градусов

Последнее, что я бы хотел отметить в этой статье - это как быть с углами, большими чем градусов?

Что это такое и с чем это можно есть, чтобы не подавиться? Возьму, я скажем, угол в градусов (радиан) и пойду от него против часовой стрелки…

На рисунке я нарисовал спираль, но ты-то понимаешь, что на самом деле у нас нет никакой спирали: у нас есть только окружность.

Так куда же мы попадем, если стартуем от определенного угла и пройдем полностью весь круг (градусов или радиан)?

Куда мы придем? А придем мы в тот же самый угол!

Это же, конечно, справедливо и для любого другого угла:

Взяв произвольный угол и пройдя полностью всю окружность, мы вернемся в тот же самый угол.

Что же нам это даст? А вот что: если, то

Откуда окончательно получим:

Для любого целого. Это значит, что синус и косинус являются периодическими функциями с периодом .

Таким образом, нет никакой проблемы в том, чтобы найти знак теперь уже произвольного угла: нам достаточно отбросить все «целые круги», которые умещаются в нашем угле и выяснить, в какой четверти лежит оставшийся угол.

Например, найти знак:

Проверяем:

  1. В градусов умещается раза по градусов (градусов):
    осталось градусов. Это угол 4 четверти. Там синус отрицательный, значит
  2. . градусов. Это угол 3 четверти. Там косинус отрицательный. Тогда
  3. . . Так как, то - угол первой четверти. Там косинус положителен. Тогда cos
  4. . . Так как, то наш угол лежит во второй четверти, где синус положительный.

Аналогичным образом мы можем поступать для тангенса и котангенса. Однако на самом деле с ними еще проще: они также являются периодическими функциями, только вот период у них в 2 раза меньше:

Итак, ты понял что такое тригонометрическая окружность и для чего она нужна.

Но у нас осталось еще очень много вопросов:

  1. А что такое отрицательные углы?
  2. Как вычислять значения тригонометрических функций в этих углах
  3. Как по известным значениям тригонометрических функций 1 четверти искать значения функций в других четвертях (неужто надо зубрить таблицу?!)
  4. Как с помощью круга упрощать решения тригонометрических уравнений?

СРЕДНИЙ УРОВЕНЬ

Ну что же, в этой статье мы с тобой продолжим изучение тригонометрической окружности и обсудим следующие моменты:

  1. Что такое отрицательные углы?
  2. Как вычислять значения тригонометрических функций в этих углах?
  3. Как по известным значениям тригонометрических функций 1 четверти искать значения функций в других четвертях?
  4. Что такое ось тангенсов и ось котангенсов?

Никаких дополнительных знаний, кроме как базовых навыков работы с единичной окружностью (предыдущая статья) нам не понадобится. Ну что же, давай приступим к первому вопросу: что такое отрицательные углы?

Отрицательные углы

Отрицательные углы в тригонометрии откладываются на тригонометрическом круге вниз от начала, по направлению движения часовой стрелки:

Давай вспомним, как мы до этого откладывали углы на тригонометрической окружности: Мы шли от положительного направления оси против часовой стрелки :

Тогда на нашем рисунке построен угол, равный. Аналогичным образом мы строили все углы.

Однако ничего нам не запрещает идти от положительного направления оси по часовой стрелке .

Мы будем тоже получать различные углы, но они будут уже отрицательными :

На следующей картинке изображено два угла, равные по абсолютной величине, но противоположные по знаку:

В целом правило можно сформулировать вот так:

  • Идем против часовой стрелки - получаем положительные углы
  • Идем по часовой стрелке - получаем отрицательные углы

Схематично правило изображено вот на этом рисунке:

Ты мог бы задать мне вполне резонный вопрос: ну углы нам нужны для того, чтобы измерять у них значения синуса, косинуса, тангенса и котангенса.

Так есть ли разница, когда у нас угол положительный, а когда - отрицательный? Я отвечу тебе: как правило есть.

Однако ты всегда можешь свести вычисление тригонометрической функции от отрицательного угла к вычислению функции в угле положительном .

Посмотри на следующую картинку:

Я построил два угла, они равны по абсолютному значению, но имеют противоположный знак. Отметим для каждого из углов его синус и косинус на осях.

Что мы с тобой видим? А вот что:

  • Синусы у углов и противоположны по знаку! Тогда если
  • Косинусы у углов и совпадают! Тогда если
  • Так как, то:
  • Так как, то:

Таким образом, мы всегда можем избавиться от отрицательного знака внутри любой тригонометрической функции: либо просто уничтожив его, как у косинуса, либо поставив его перед функцией, как у синуса, тангенса и котангенса.

Кстати, вспомни-ка, как называется функция, у которой для любого допустимого выполняется: ?

Такая функция называется нечетной .

А если же для любого допустимого выполняется: ? То в таком случае функция называется четной .

Таким образом, мы с тобой только что показали, что:

Синус, тангенс и котангенс - нечетные функции, а косинус - четная.

Таким образом, как ты понимаешь, нет никакой разницы, ищем ли мы синус от положительного угла или отрицательного: справиться с минусом очень просто. Так что нам не нужны таблицы отдельно для отрицательных углов.

С другой стороны, согласись, было бы очень удобно зная только тригонометрические функции углов первой четверти, уметь вычислять аналогичные функции и для остальных четвертей. Можно ли это сделать? Конечно, можно! У тебя есть по крайней мере 2 пути: первый - строить треугольник и применять теорему Пифагора (так мы с тобой и отыскали значения тригонометрических функций для основных углов первой четверти), а второй - запомнив значения функций для углов в первой четверти и некое несложное правило, уметь вычислять тригонометрические функции для всех остальных четвертей. Второй способ избавит тебя от долгой возни с треугольниками и с Пифагором, поэтому мне он видится более перспективным:

Итак, данный способ (или правило) называется - формулы приведения.

Формулы приведения

Грубо говоря, эти формулы помогут тебе не запоминать вот такую таблицу (она между прочим содержит 98 чисел!) :

если ты помнишь вот эту (всего на 20 чисел):

То есть ты сможешь не забивать себе голову совершенно ненужными 78 числами! Пусть, например, нам нужно вычислить. Ясно, что в маленькой таблице такого нет. Что же нам делать? А вот что:

Во-первых, нам понадобятся следующие знания:

  1. Синус и косинус имеют период (градусов), то есть

    Тангенс (котангенс) имеют период (градусов)

    Любое целое число

  2. Синус и тангенс - функции нечетные, а косинус - четная:

Первое утверждение мы уже доказали с тобой, а справедливость второго установили совсем недавно.

Непосредственно правило приведения выглядит вот так:

  1. Если мы вычисляем значение тригонометрической функции от отрицательного угла - делаем его положительным при помощи группы формул (2). Например:
  2. Отбрасываем для синуса и косинуса его периоды: (по градусов), а для тангенса - (градусов). Например:
  3. Если оставшийся «уголок» меньше градусов, то задача решена: ищем его в «малой таблице».
  4. Иначе ищем, в какой четверти лежит наш угол: это будет 2, 3 или 4 четверть. Смотрим, какой знак имеет искомая функция в четверти. Запомнили этот знак!!!
  5. Представляем угол в одной из следующих форм:

    (если во второй четверти)
    (если во второй четверти)
    (если в третьей четверти)
    (если в третьей четверти)

    (если в четвертой четверти)

    так, чтобы оставшийся угол был больше нуля и меньше градусов. Например:

    В принципе не важно, в какой из двух альтернативных форм для каждой четверти ты представишь угол. На конечном результате это не скажется.

  6. Теперь смотрим, что у нас получилось: если ты выбрал запись через или градусов плюс минус что-либо, то знак функции меняться не будет: ты просто убираешь или и записываешь синус, косинус или тангенс оставшегося угла. Если же ты выбрал запись через или градусов, то синус меняем на косинус, косинус на синус, тангенс на котангенс, котангенс - на тангенс.
  7. Ставим перед получившимся выражением знак из пункта 4.

Давай продемонстрируем все вышесказанное на примерах:

  1. Вычислить
  2. Вычислить
  3. Най-ди-те зна-че-ние вы-ра-же-ния:

Начнем по порядку:

  1. Действуем согласно нашему алгоритму. Выделяем целое число кругов для:

    В общем, делаем вывод, что в угол помещается целиком 5 раз по, а сколько осталось? Осталось. Тогда

    Ну вот, лишнее мы отбросили. Теперь разбираемся со знаком. лежит в 4 четверти. Синус четвертой четверти имеет знак «минус», его я и не должен забыть поставить в ответе. Далее, представляем согласно одной из двух формул пункта 5 правил приведения. Я выберу:

    Теперь смотрим, что получилось: у нас случай с градусами, тогда отбрасываем и синус меняем на косинус. И ставим перед ним знак «минус»!

    градусов - угол в первой четверти. Мы знаем (ты мне обещал выучить малую таблицу!!) его значение:

    Тогда получим окончательный ответ:

    Ответ:

  2. все то же самое, но вместо градусов - радианы. Ничего страшного. Главное помнить, что

    Но можно и не заменять радианы на градусы. Это вопрос твоего вкуса. Я не буду ничего менять. Начну опять-таки с отбрасывания целых кругов:

    Отбрасываем - это два целых круга. Осталось вычислить. Данный угол находится в третьей четверти. Косинус третьей четверти отрицательный. Не забудем поставить знак «минус» в ответе. можно представить как. Снова вспоминаем правило: у нас случай «целого» числа (или), тогда функция не меняется:

    Тогда.
    Ответ: .

  3. . Нужно проделать все то же самое, но уже с двумя функциями. Я буду несколько более краток: и градусов - углы второй четверти. Косинус второй четверти имеет знак «минус», а синус - «плюс». можно представить как: , а как, тогда

    Оба случая - «половинки от целого ». Тогда синус меняется на косинус, а косинус - на синус. Причем перед косинусом стоит знак «минус»:

Ответ: .

Теперь потренируйся самостоятельно на следующих примерах:

А вот и решения:


  1. Вначале избавимся от минуса, вынеся его перед синусом (поскольку синус - функция нечетная!!!). Затем рассмотрим углы:

    Отбрасываем целое количество кругов - то есть три круга ().
    Остается вычислить: .
    Так же поступаем и со вторым углом:

    Удаляем целое число кругов - 3 круга () тогда:

    Теперь думаем: в какой четверти лежит оставшийся угол? Он «не дотягивает» до всего. Тогда какая это четверть? Четвертая. Каков знак косинуса четвертой четверти? Положительный. Теперь представим. Так как вычитаем мы из целого количества, то знак косинуса не меняем:

    Подставляем все полученные данные в формулу:

    Ответ: .


  2. Стандартно: убираем минус из косинуса, пользуясь тем, что.
    Осталось сосчитать косинус градусов. Уберем целые круги: . Тогда

    Тогда.
    Ответ: .

  3. Действуем, как в предыдущем примере.

    Поскольку ты помнишь, что период у тангенса - (или) в отличие от косинуса или синуса, у которых он в 2 раза больше, то удалим целое количество.

    градусов - угол во второй четверти. Тангенс второй четверти отрицательный, тогда не забудем в конце о «минусе»! можно записать как. Тангенс меняется на котангенс. Окончательно получим:

    Тогда.
    Ответ: .

Ну что же, осталось совсем немного!

Ось тангенсов и ось котангенсов

Последнее, на чем бы мне хотелось здесь остановиться - это на двух дополнительных осях. Как мы уже обсуждали, у нас есть две оси:

  1. Ось - ось косинусов
  2. Ось - ось синусов

На самом деле, координатные оси у нас закончились, не так ли? Но а как же быть с тангенсами и котангенсами?

Неужели, для них нет никакой графической интерпретации?

На самом деле, она есть, ее ты можешь увидеть на вот этой картинке:

В частности, по этим картинкам можно сказать вот что:

  1. Тангенс и котангенс имеют одинаковые знаки по четвертям
  2. Они положительны в 1 и 3 четверти
  3. Они отрицательны во 2 и 4 четверти
  4. Тангенс не определен в углах
  5. Котангенс не определен в углах

Для чего еще нужны эти картинки? Узнаешь на продвинутом уровне, где я расскажу, как с помощью тригонометрического круга можно упрощать решения тригонометрических уравнений!

ПРОДВИНУТЫЙ УРОВЕНЬ

В этой статье я опишу, как единичная окружность (тригонометрическая окружность) может пригодиться при решении тригонометрических уравнений.

Я могу выделить два случая, когда она может оказаться полезной:

  1. В ответе у нас не получается «красивый» угол, но тем не менее надо производить отбор корней
  2. В ответе получается уж слишком много серий корней

Никаких специфических знаний тебе не требуется, кроме знания темы:

Тему «тригонометрические уравнения» я старался писать, не прибегая к окружности. Многие бы меня за такой подход не похвалили.

Но мне милее формулы, уж что тут поделать. Однако в некоторых случаях формул оказывается мало. Написать эту статью меня мотивировал следующий пример:

Решите уравнение:

Ну что же. Решить само уравнение несложно.

Обратная замена:

Отсюда наше исходное уравнение равносильно аж четырем простейшим уравнениям! Неужели нам нужно будет записывать 4 серии корней:

В принципе, на этом можно было бы и остановиться. Но только не читателям данной статьи, претендующей на некую «усложненность»!

Вначале рассмотрим первую серию корней. Итак, берется единичная окружность, теперь давай нанесем эти корни на окружность (отдельно для и для):

Обрати внимание: какой угол получился между углами и? Это угол. Теперь проделаем то же самое и для серии: .

Между корнями уравнения снова получился угол в. А теперь совместим эти две картинки:

Что же мы видим? А то, все углы между нашими корнями равны. А что это значит?

Если мы стартуем от угла и будем брать углы, равные (для любого целого), то мы всегда попадем в одну из четырех точек на верхней окружности! Таким образом, 2 серии корней:

Можно объединить в одну:

Увы, для серий корней:

Данные рассуждения уже не будут справедливы. Сделай чертеж и пойми, почему это так. Однако, их можно объединить следующим образом:

Тогда исходное уравнение имеет корни:

Что является довольно кратким и лаконичным ответом. А о чем говорит краткость и лаконичность? Об уровне твоей математической грамоты.

Это был первый пример, в котором использование тригонометрической окружности дало полезные плоды.

Второй пример - уравнения, которые имеют «некрасивые корни».

Например:

  1. Решите уравнение.
  2. Найдите его корни, принадлежащие промежутку.

Первая часть не представляет из себя ничего сложного.

Поскольку ты уже знаком с темой , то я позволю себе быть кратким в моих выкладках.

тогда или

Так мы нашли корни нашего уравнения. Ничего сложного.

Сложнее решить вторую часть задания, не зная, чему в точности равен арккосинус от минус одной четверти (это не табличное значение).

Однако мы можем изобразить найденные серии корней на единичной окружности:

Что мы видим? Во-первых, рисунок дал нам понять, в каких пределах лежит арккосинус:

Эта визуальная интерпретация поможет нам найти корни, принадлежащие отрезку: .

Во-первых, в него попадает само число, затем (см. рис).

также принадлежит отрезку.

Таким образом, единичная окружность помогает определить, в какие пределы попадают «некрасивые» углы.

У тебя должен был остаться по крайней мере еще один вопрос: а как нам быть с тангенсами и котангенсами?

На самом деле, для них тоже есть свои оси, правда они имеют немного специфический вид:

В остальном же способ обращения с ними будет такой же, как с синусом и косинусом.

Пример

Дано уравнение.

  • Решите данное уравнение.
  • Укажите корни данного уравнения, принадлежащие промежутку.

Решение:

Рисуем единичную окружность и отмечаем на ней наши решения:

Из рисунка можно понять, что:

Или даже более того: так как, то

Тогда найдем корни, принадлежащие отрезку.

, (так как)

Предоставляю тебе самостоятельно убедиться, что других корней, принадлежащих промежутку, наше уравнение не имеет.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Главный инструмент тригонометрии - это тригонометрическая окружность, она позволяет измерять углы, находить их синусы, косинусы и прочее.

Есть два способа измерять углы.

  1. Через градусы
  2. Через радианы

И наоборот: от радиан к градусам:

Чтобы найти синус и косинус угла нужно:

  1. Провести единичную окружность с центром, совпадающим с вершиной угла.
  2. Найти точку пересечения этого угла с окружностью.
  3. Её «иксовая» координата - это косинус искомого угла.
  4. Её «игрековая» координата - это синус искомого угла.

Формулы приведения

Это формулы, позволяющие упростить сложные выражения тригонометрической функции.

Эти формулы помогут тебе не запоминать вот такую таблицу:

Подведение итогов

    Ты научился делать универсальную шпору по тригонометрии.

    Ты научился решать задачи намного легче и быстрее и, самое главное, без ошибок.

    Ты понял, что тебе не надо зубрить никакие таблицы и вообще мало что нужно зубрить!

Теперь я хочу услышать тебя!

    Удалось ли тебе разобраться с этой сложной темой?

    Что тебе понравилось? Что не понравилось?

    Может быть ты нашел ошибку?

    Пиши в комментариях!

    И удачи на экзамене!

Пример 1.

Найти радианную меру угла равного а) 40° , б)120° , в)105°

а) 40° = 40·π / 180 = 2π/9

б) 120° = 120·π/180 = 2π/3

в) 105° = 105·π/180 = 7π/12

Пример 2.

Найти градусную меру угла выраженного в радианах а) π/6 , б) π/9, в) 2·π/3

а) π/6 = 180°/6 = 30°

б) π/9 = 180°/9 = 20°

в) 2π/3 = 2·180°/6 = 120°

Определение синуса, косинуса, тангенса и котангенса

Синус острого угла t прямоугольного треугольника равен отношению противолежащего катета к гипотенузе (рис.1):

Косинус острого угла t прямоугольного треугольника равен отношению прилежащего катета к гипотенузе (рис.1):

Эти определения относятся к прямоугольному треугольнику и являются частными случаями тех определений, которые представлены в данном разделе.

Поместим тот же прямоугольный треугольник в числовую окружность (рис.2).

Мы видим, что катет b равен определенной величине y на оси Y (оси ординат), катет а равен определенной величине x на оси X (оси абсцисс). А гипотенуза с равна радиусу окружности (R).

Таким образом, наши формулы обретают иной вид.

Так как b = y , a = x , c = R, то:

y x
sin t = -- , cos t = --.
R R

Кстати, тогда иной вид обретают, естественно, и формулы тангенса и котангенса.

Так как tg t = b/a, ctg t = a/b, то, верны и другие уравнения:

tg t = y /x ,

ctg = x /y .

Но вернемся к синусу и косинусу. Мы имеем дело с числовой окружностью, в которой радиус равен 1. Значит, получается:

y
sin t = -- = y ,
1

x
cos t = -- = x .
1

Так мы приходим к третьему, более простому виду тригонометрических формул.

Эти формулы применимы не только к острому, но и к любому другому углу (тупому или развернутому).

Определения и формулы cos t, sin t, tg t, ctg t.

Из формул тангенса и котангенса следует еще одна формула:

Уравнения числовой окружности.

Знаки синуса, косинуса, тангенса и котангенса в четвертях окружности:

1-я четверть 2-я четверть 3-я четверть 4-я четверть
cos t + +
sin t + +
tg t, ctg t + +

Косинус и синус основных точек числовой окружности:


Как запомнить значения косинусов и синусов основных точек числовой окружности.

Прежде всего надо знать, что в каждой паре чисел значения косинуса стоят первыми, значения синуса – вторыми.

1) Обратите внимание: при всем множестве точек числовой окружности мы имеем дело лишь с пятью числами (в модуле):

1 √2 √3
0; -; --; --; 1.
2 2 2

Сделайте для себя это «открытие» - и вы снимете психологический страх перед обилием чисел: их на самом деле всего-то пять.

2) Начнем с целых чисел 0 и 1. Они находятся только на осях координат.

Не надо учить наизусть, где, к примеру, косинус в модуле имеет единицу, а где 0.

На концах оси косинусов (оси х ), разумеется, косинусы равны модулю 1 , а синусы равны 0.

На концах оси синусов (оси у ) синусы равны модулю 1 , а косинусы равны 0.

Теперь о знаках. Ноль знака не имеет. Что касается 1 – тут просто надо вспомнить самую простую вещь: из курса 7 класса вы знаете, что на оси х справа от центра координатной плоскости – положительные числа, слева – отрицательные; на оси у вверх от центра идут положительные числа, вниз – отрицательные. И тогда вы не ошибетесь со знаком 1.

3) Теперь перейдем к дробным значениям.

Во всех знаменателях дробей – одно и то же число 2. Уже не ошибемся, что писать в знаменателе.

В серединах четвертей косинус и синус имеют абсолютно одинаковое значение по модулю: √2/2. В каком случае они со знаком плюс или минус – см.таблицу выше. Но вряд ли вам нужна такая таблица: вы знаете это из того же курса 7 класса.

Все ближайшие к оси х точки имеют абсолютно одинаковые по модулю значения косинуса и синуса: (√3/2; 1/2).

Значения всех ближайших к оси у точек тоже абсолютно идентичны по модулю – причем в них те же числа, только они «поменялись» местами: (1/2; √3/2).

Теперь о знаках – тут свое интересное чередование (хотя со знаками, полагаем, вы должны легко разобраться и так).

Если в первой четверти значения и косинуса, и синуса со знаком плюс, то в диаметрально противоположной (третьей) они со знаком минус.

Если во второй четверти со знаком минус только косинусы, то в диаметрально противоположной (четвертой) – только синусы.

Осталось только напомнить, что в каждом сочетании значений косинуса и синуса первое число – это значение косинуса, второе число – значение синуса.

Обратите внимание еще на одну закономерность: синус и косинус всех диаметрально противоположных точек окружности абсолютно равны по модулю. Возьмем, к примеру, противоположные точки π/3 и 4π/3:

cos π/3 = 1/2, sin π/3 = √3/2
cos 4π/3 = -1/2, sin 4π/3 = -√3/2

Различаются значения косинусов и синусов двух противоположных точек только по знаку. Но и здесь есть своя закономерность: синусы и косинусы диаметрально противоположных точек всегда имеют противоположные знаки.

Важно знать :

Значения косинусов и синусов точек числовой окружности последовательно возрастают или убывают в строго определенном порядке: от самого малого значения до самого большого и наоборот (см. раздел «Возрастание и убывание тригонометрических функций» - впрочем, в этом легко убедиться, лишь просто посмотрев на числовую окружность выше).

В порядке убывания получается такое чередование значений:

√3 √2 1 1 √2 √3
1; --; --; -; 0; – -; – --; – --; –1
2 2 2 2 2 2

Возрастают они строго в обратном порядке.

Поняв эту простую закономерность, вы научитесь довольно легко определять значения синуса и косинуса.

Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту. Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат - борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого "борщевого" прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.


Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.


В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.

Линейные угловые функции - это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.

Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания. А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.

Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.

На рисунке показаны два уровня различий для математических . Первый уровень - это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень - это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой U . Этим занимаются физики. Мы же можем понимать третий уровень - различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B - борщ. Вот как будут выглядеть линейные угловые функции для борща.

Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики - мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.

И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.

Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.

Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.

Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.

Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.

Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).


Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните - все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: "деление на ноль невозможно", "любое число, умноженное на ноль, равняется нулю", "за выколом точки ноль" и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу - это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что " мы покрасили". Но я немного отвлекся.

Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.

Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).

Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.

Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))

Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.

Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.

Появление математики на нашей планете.

Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.

суббота, 26 октября 2019 г.

Просмотрел интересное видио про ряд Гранди Один минус один плюс один минус один - Numberphile . Математики врут. Они не выполнили проверку равенства в ходе своих рассуждений.

Это перекликается с моими рассуждениями о .

Давайте более детально рассмотрим признаки обмана нас математиками. В самом начале рассуждений, математики говорят, что сумма последовательности ЗАВИСИТ от того, четное количество элементов в ней или нет. Это ОБЪЕКТИВНО УСТАНОВЛЕННЫЙ ФАКТ. Что происходит дальше?

Дальше математики из единицы вычитают последовательность. К чему это приводит? Это приводит к изменению количества элементов последовательности - четное количество изменяется на нечетное, нечетное изменяется на четное. Ведь мы добавили к последовательности один элемент, равный единице. Несмотря на всю внешнюю схожесть, последовательность до преобразования не равна последовательности после преобразования. Даже если мы рассуждаем о бесконечной последовательности, необходимо помнить, что бесконечная последовательность с нечетным количеством элементов не равна бесконечной последовательности с четным количеством элементов.

Ставя знак равенства между двумя разными по количеству элементов последовательностями, математики утверждают, что сумма последовательности НЕ ЗАВИСИТ от количества элементов в последовательности, что противоречит ОБЪЕКТИВНО УСТАНОВЛЕННОМУ ФАКТУ. Дальнейшие рассуждения о сумме бесконечной последовательности являются ложными, поскольку основаны на ложном равенстве.

Если вы видите, что математики в ходе доказательств расставляют скобки, переставляют местами элементы математического выражения, что-нибудь добавляют или убирают, будьте очень внимательны, скорее всего вас пытаются обмануть. Как карточные фокусники, математики различными манипуляциями с выражением отвлекают ваше внимание, чтобы в итоге подсунуть вам ложный результат. Если карточный фокус вы не можете повторить, не зная секрета обмана, то в математике всё гораздо проще: вы даже ничего не подозреваете об обмане, но повторение всех манипуляций с математическим выражением позволяет вам убедить других в правильности полученного результата, точно так же, как когда-то убедили вас.

Вопрос из зала: А бесконечность (как количество элементов в последовательности S), она четная или нечётная? Как можно поменять четность у того, что четности не имеет?

Бесконечность для математиков, как Царство Небесное для попов - никто никогда там не был, но все точно знают, как там всё устроено))) Согласен, после смерти вам будет абсолютно безразлично, четное или нечетное количество дней вы прожили, но... Добавив всего один день в начало вашей жизни, мы получим совсем другого человека: фамилия, имя и отчество у него точно такие же, только дата рождения совсем другая - он родился за один день до вас.

А теперь по существу))) Допустим, конечная последовательность, имеющая четность, теряет эту четность при переходе к бесконечности. Тогда и любой конечный отрезок бесконечной последовательности должен потерять четность. Мы этого не наблюдаем. То, что мы не можем точно сказать, четное или нечетное количество элементов у бесконечной последовательности, совсем не означает, что четность исчезла. Не может четность, если она есть, бесследно исчезнуть в бесконечности, как в рукаве шулера. Для этого случая есть очень хорошая аналогия.

Вы никогда не спрашивали у кукушки, сидящей в часах, в каком направлении вращается стрелка часов? Для неё стрелка вращается в обратном направлении тому, которое мы называем "по часовой стрелке". Как это не парадоксально звучит, но направление вращения зависит исключительно от того, с какой стороны мы вращение наблюдаем. И так, у нас есть одно колесо, которое вращается. Мы не можем сказать, в каком направлении происходит вращение, поскольку мы его можем наблюдать как с одной стороны плоскости вращения, так и с другой. Мы можем только засвидетельствовать факт, что вращение есть. Полная аналогия с четностью бесконечной последовательности S .

Теперь добавим второе вращающееся колесо, плоскость вращения которого параллельна плоскости вращения первого вращающегося колеса. Мы по прежнему не можем точно сказать, в каком направлении вращаются эти колеса, но мы абсолютно точно можем сказать, вращаются оба колеса в одну сторону или в противоположные. Сравнивая две бесконечные последовательности S и 1-S , я при помощи математики показал, что у этих последовательностей разная четность и ставить знак равенства между ними - это ошибка. Лично я верю математике, я не доверяю математикам))) Кстати, для полного понимания геометрии преобразований бесконечных последовательностей, необходимо вводить понятие "одновременность" . Это нужно будет нарисовать.

среда, 7 августа 2019 г.

Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие "бесконечность" действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:

Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:

Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.

Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".

Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.

Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:

Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.

Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:

Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.

Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.

Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).

pozg.ru

воскресенье, 4 августа 2019 г.

Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:

Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."

Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:

Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.

За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.

суббота, 3 августа 2019 г.

Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.

Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.

После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.

Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.

Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.

В заключение, я хочу показать вам, как математики манипулируют с
Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.

А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.

Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.

Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.

При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.