Принцип суперпозиции электрических полей. Принцип суперпозиции электрических

> Суперпозиция полей

Рассмотрите принцип суперпозиции электрических полей: определение, формулировка и закон суперпозиции полей. Читайте о роли векторных полей и сложении векторов.

Когда множество электрических полей влияют на одну точку, мы получаем сумму прилагаемой силы каждого поля.

Задача обучения

  • Вывести принцип суперпозиции для линейной системы.

Основные пункты

  • Принцип суперпозиции: у всех линейных систем чистая реакция на несколько раздражителей в конкретном месте и времени равна сумме реакций на каждый индивидуальный стимул.
  • Возможные стимулы не ограничиваются числами, функциями, векторами, векторными полями или меняющимися во времени сигналами.
  • Принцип суперпозиции можно использовать к любой линейной системе, например, алгебраические формулы, линейные дифференциальные уравнения и их комбинирование.
  • Электрические поля – непрерывные поля векторов, так что в конкретной точке можно обнаружить силы и приплюсовать их.

Термины

  • Принцип суперпозиции: линейная комбинация двух или больше решений уравнений сама по себе выступает решением.
  • Ортогональные – перпендикулярны друг другу.
  • Вектор – ориентированное количество с величиной и направлением.

Если мы говорим о векторных полях, то они подчиняются принципу суперпозиции полей: у всех линейных систем чистая реакция на несколько раздражителей в конкретном месте и времени равна сумме реакций на каждый индивидуальный стимул.

Возможные стимулы не ограничиваются числами, функциями, векторами, векторными полями или меняющимися во времени сигналами. Важно отметить, что закон суперпозиции полей можно использовать на любой линейной системе, включая алгебраические формулы, линейные дифференциальные уравнения и их комбинирование.

К примеру, если силы А и В стабильны и одновременно влияют на тело, то результирующая сила будет их суммой. Векторное сложение – коммутативное, так что добавление сил не повлияет на результирующий вектор. Это также относится и к вычитанию векторов.

Сила a и b влияет на объект в точке О. Их сумма коммутативна и выводит на результат с

Электрические поля – непрерывные поля векторов, поэтому в конкретной точке можно отыскать силы, которые будут применяться к тестовому заряду, и приплюсовать их, чтобы вывести результат. Для начала нужно получить все компонентные векторы силы на каждой из ортодоксальных осей. Для этого можно использовать тригонометрические функции. Далее добавьте их по каждой оси.

Это единственная форма решения задачи. Для обнаружения полного результирующего вектора можно использовать теорему Пифагора (гипотенуза треугольника, созданного приложенными силами в виде ног) и угол относительно конкретной оси, приравняв обратную касательную угла к соотношению силы смежных и противоположных ног.

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 , …,Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая силаF, действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Qi:

Согласно (79.1), и , где Е-напряженность результирующего поля, а Еi - напряженность поля, создаваемого зарядом Qi ;. Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя.Электрический диполь - система двух равных по модулю разно именных точечных зарядов (+Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда |Q | на плечо l , называетсяэлектрическим моментом диполя илидипольным моментом (рис. 122).

Рис. 122

где Е+ и Е- - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Рис. 123

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Основная задача из раздела электростатики формулируется таким образом: по заданным распределению в пространстве и величине (источников поля) определить значение вектора напряженности Е во всех точках поля. Решение этой задачи возможно на основе такого понятия как принцип суперпозиции электрических полей (принцип независимости действия электрических полей): напряженность какого-либо электрического поля системы зарядов будет равняться геометрической сумме напряженности полей, которые создаются каждым из зарядов.

где Ei - напряженность в определенной точке пространства поля, создаваемого одним i-м зарядом системы, а n - суммарное число дискертных зарядов, которые входят в состав системы.

Пример решения задачи, в основу которого положен электрических полей. Так для определения напряженности электростатического поля, которое создается в вакууме неподвижными точечными зарядами q₁, q₂, …, qn, используем формулу:

E = (1/4πε₀) Σ (qi/r³i)ri

где ri - радиус-вектор, проведенный из точечного заряда qi в рассматриваемую точку поля.

Приведем еще один пример. Определение напряженности электростатического поля, которое создается в вакууме электрическим диполем.

Система из двух одинаковых по абсолютной величине и, при этом, противоположных по знаку зарядов q>0 и -q, расстояние I между которыми относительно мало в сравнении с расстоянием рассматриваемых точек. Плечом диполя будет называться вектор l, который направлен по оси диполя к положительному заряду от отрицательного и численно равен расстоянию I между ними. Вектор pₑ = ql - электрический момент диполя (дипольный электрический момент).

Напряженность Е поля диполя в любой точке:

Е = Е₊ + Е₋,

где Е₊ и Е₋ являются напряженностями полей электрических зарядов q и -q.

Таким образом, в точке А, которая расположена на оси диполя, напряженность поля диполя в вакууме будет равна

E = (1/4πε₀)(2pₑ/r³)

В точке В, которая расположена на перпендикуляре, восстановленном к оси диполя из его середины:

E = (1/4πε₀)(pₑ/r³)

В произвольной точке М, достаточно удаленной от диполя (r≥l), модуль напряженности его поля равен

E = (1/4πε₀)(pₑ/r³)√3cosϑ + 1

Кроме того, принцип суперпозиции электрических полей состоит из двух утверждений:

  1. Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел.
  2. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F₁, F₂, …, Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил:
    F = F₁ + F₂ + … + Fn.

Таким образом, принцип суперпозиции электрических полей позволяет прийти к одному важному утверждению.

Как известно, справедлив не только для точечных масс, но и для шаров со сферически-симметричным распределением массы (в частности, для шара и точечной массы); тогда r — расстояние между центрами шаров (от точечной массы до центра шара). Этот факт вытекает из математической формы закона всемирного тяготении и принципа суперпозиции.

Поскольку формула имеет ту же структуру, что и закон всемирного тяготения, и для кулоновской силы также выполнен принцип суперпозиции полей, можно сделать аналогичный вывод: по закону Кулона будут взаимодействовать два заряженных шара (точечный заряд с шаром) при условии, что шары имеют сферически-симметричное распределение заряда; величина r в таком случае будет расстоянием между центрами шаров (от точечного заряда до шара).

Именно поэтому напряжённость поля заряженного шара окажется вне шара такой же, как и у точечного заряда.

Но в электростатике, в отличие от гравитации, с таким понятием, как суперпозиция полей, надо быть осторожным. Например, при сближении положительно заряженных металлических шаров сферическая симметрия нарушится: положительные заряды, взаимно отталкиваясь, будут стремиться к наиболее удалённым друг от друга участкам шаров (центры положительных зарядов будут находиться дальше друг от друга, чем центры шаров). Поэтому сила отталкивания шаров в данном случае будет меньше того значения, которое получится из закона Кулона при подстановке вместо r расстояния между центрами.

Полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 ,…, Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q 0 равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q;.

Согласно (79.1), F = Q 0 E и F 1 = Q 0 E 1 , где Е - напряженность результирующего поля, а Е 1 - напряженность поля, создаваемого зарядом Q 1 . Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q|на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

где Е + и Е_ - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2 ≪ г, поэтому

2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где г" - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Е в, получим

(80.5)

Подставив в выражение (80.S) значение (80.4), получим

Вектор E g имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

Теорема Гаусса для электростатического

Поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен


Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Электричество и магнетизм

ЛЕКЦИЯ 11

ЭЛЕКТРОСТАТИКА

Электрический заряд

Большое количество явлений в природе связано с проявлением особого свойства эле-ментарных частиц вещества - наличия у них электриче­ского заряда. Эти явления были названы электрическими и магнитными.

Слово «электричество» происходит от греческого hlectron - электрон (янтарь). Способность натертого янтаря приобретать заряд и притягивать легкие предметы была отмечена еще в древней Греции.

Слово «магнетизм» происходит от названия города Магнезия в Малой Азии, вблизи которого были открыты свойства железной руды (магнитного железняка FеО∙Fе 2 О 3) притягивать железные предметы и сообщать им маг­нитные свойства.

Учение об электричестве и магнетизме распадается на разделы:

а) учение о неподвижных зарядах и свя-занных с ними неизменных электрических полях - электростатика;

б) учение о равномерно движущихся заря-дах – постоянный ток и маг­нетизм;

в) учение о неравномерно движущихся зарядах и создаваемых при этом переменных полях - переменный ток и электродинамика, или теория элект­ромагнитного поля.

Электризация трением

Стеклянная палочка, натертая кожей, или эбонитовая палочка, натер­тая шерстью, при-обретают при этом электрический заряд или, как говорят, электризуются.

Бузиновые шарики (рис.11.1), к которым прикоснулись стек-лянной па­лочкой, отталкиваются. Если к ним прикоснуться эбонитовой палочкой, они также отталки-ваются. Если же к одному из них прикоснуться эбонито­вой, а к другому стеклянной палочкой, то они притянутся.

Следовательно, существуют два типа электрических зарядов. Заряды, возникающие на потертом кожей стекле, условились назы-вать положи­тельными (+). Заряды, возникаю-щие на потертом шерстью эбоните, услови-лись называть отрицательными (-).

Опыты показывают, что одноименные заряды (+ и +, либо – и -) отталкиваются, разноименные (+ и -) притягиваются.

Точечным зарядом называется заряжен-ное тело, размерами которого можно прене-бречь по сравнению с расстояниями, на которых рас­сматривается воздействие этого заряда на другие заряды. Точечный заряд является абстракцией подобно материальной точке в механике.

Закон взаимодействия точечных

Зарядов (закон Кулона)

В 1785 г. французский ученый Огюст Кулон (1736-1806) на основании опытов с крутильными весами, на конце коромысла ко-торых помещались заряженные тела, а затем к ним подносились другие заряженные тела, уста­новил закон, определяющий силу взаимо-действия двух неподвижных точеч­ных зарядов Q 1 и Q 2 ,расстояние между которыми r .

Закон Кулона в вакууме гласит: сила взаимодействия F между двумя неподвиж-ными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q 1 и Q 2 и обратно пропорциональна квадрату расстоя-ния r между ними:

,

где коэффициент k зависит от выбора системы единиц и свойств среды, в которой осу­ществляется взаимодействие зарядов.

Величина, показывающая, во сколько раз сила взаимодействия между зарядами в данном диэлектрике меньше силы взаимодействия между ними в вакууме, называется относительной диэлектрической проницаемостью среды e .

Закон Кулона для взаимодействия в среде : сила взаимодействия между двумя точечными зарядами Q 1 и Q 2 прямо пропор-циональна произведению их величин и обрат-но пропорциональна произведению диэлек-трической про­ницаемости среды e . на квадрат расстояния r между зарядами:

.

В системе СИ , где e 0 –диэлект-рическая проницаемость ва­куума, или элект-рическая постоянная. Величина e 0 относится к числу фундамен­тальных физических пос-тоянных и равна e 0 =8,85∙10 -12 Кл 2 /(Н∙м 2), или e 0 =8,85∙10 -12 Ф/м, где фарад (Ф) - единица электрической емкости. Тогда .

С учетом k закон Кулона запишется в окончательном виде:

,

где ee 0 =e а - абсолютная диэлектрическая прони­цаемость среды.

Закон Кулона в векторной форме .

,

где F 12 - сила, действующая на заряд Q 1 со стороны заряда Q 2 , r 12 - радиус-вектор, соединяющий заряд Q 2 с зарядом Q 1, r =|r 12 | (рис.11.1).

На заряд Q 2 со стороны заряда Q 1 действует сила F 21 =-F 12 , т.е. справедлив 3-й закон Ньютона.

11.4. Закон сохранения электрического

Заряда

Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком Майклом Фарадеем (1791-1867), - закон сохранения заряда .

Закон гласит: алгебраическая сумма электрических зарядов любой замкнутой сис-темы (системы, не обменивающейся зарядами с внешними тела­ми) остается неизменной, какие бы процессы ни происходили внутри этой системы:

.

Закон сохранения электрического заряда выполняется строго как в мак­роскопических взаимодействиях, например при электри-зации тел трением, когда оба тела заряжаются численно равными зарядами противополож-ных знаков, так и в микроскопических взаимодействиях, в ядерных реакциях.

Электризация тела через влияние (электростатическая индукция ). При поднесении к изолированному проводнику заряженного тела происхо­дит разделение зарядов на проводнике (рис. 79).

Если индуцированный на удаленном конце проводника заряд отвести в землю, а затем, сняв предварительно заземление, убрать заряженное тело, то оставшийся на проводнике заряд распределится по провод-нику.

Опытным путем (1910-1914) американс-кий физик Р. Милликен (1868-1953) пока­зал, что электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е =1,6∙10 -19 Кл). Электрон (т е = 9,11∙10 -31 кг) и протон (m p =1,67∙10 -27 кг) являются соответст-венно носителями элементарных отрицатель-ного и положительного зарядов.

Электростатическое поле.

Напряженность

Неподвижный заряд Q неразрывно свя-зан с электрическим полем в ок­ружающем его пространстве. Электрическое поле представляет собой особый вид материи и является материальным носителем взаимо-дей­ствия между зарядами даже в случае отсутствия вещества между ними.

Электрическое поле заряда Q действует с силой F на помещаемый в ка­кую-либо из точек поля пробный заряд Q 0 .

Напряженность электрического поля. Вектор напряженности электрического поля в данной точке - физическая величина, определяемая силой, действующей на проб-ный единичный положительный заряд, поме-щенный в эту точку поля:

.

Напряженность поля точечного заряда в вакууме

.

Направление вектора Е совпадает с напра-влением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заря-да); если поле создается отрицательным заря-дом, то вектор Е направлен к заряду (рис. 11.3).

Единица напряжен-ности электрического по­ля - ньютон на кулон (Н/Кл): 1 Н/Кл – напря-женность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) - еди­ница потенциала электростатического поля.

Линии напряженности .

Линии, касательные к которым в каждой их точке совпадают по направлению с вектором напряженности в этой точке, называ­ются линиями напряженности (рис.11.4).

Напряженность поля точечного заряда q на расстоянии r от него в системе СИ:

.

Линии напряженности поля точечного заряда представляют собой лучи, выходящие из точки, где помещен заряд (для положите-льного заряда), или входящие в нее (для отрицательного заряда) (рис.11.5,а, б).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой (см. рис.11.4): число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е . Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n кото-рой образует угол a с векто-ром Е , равно E dScos a=E n dS, где Е n - проекция вектора Е на нормаль n к площадке dS (рис.11.6). Величина

называется потоком вектора напряжен-ности через площадку dS. Единица потока вектора напряженности электростатического поля - 1 В∙м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

, (11.5)

где интеграл берется по замкнутой поверх-ности S. Поток вектора Е является алгебра­и-ческой величиной: зависит не только от конфигурации поля Е , но и от выбора направления n .

Принцип суперпозиции электрических

Полей

Если электрическое поле создается заря-дами Q 1 , Q 2 , … , Q n , то на пробный заряд Q 0 действует сила F равная векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i :

.

Вектор напряженности электрического поля системы зарядов равен геометрической сумме напряженностей полей, создаваемых каждым из заря­дов в отдельности:

.

Эта принцип суперпозиции (наложения) электростатических полей .

Принцип гласит : напряженность Е результирующего поля, создаваемого систе-мой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчи-тать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.