График функции y 1 4x. Построение графиков онлайн. Построение графика линейной функции

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже.

Квадратичная функция

Рис 1. Общий вид параболы

Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым.

Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0).

Основные свойства квадратичной функции

1. При х =0, у=0, и у>0 при х0

2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.

3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке , потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U Решая уравнение \(x"\left(t \right) = 0,\) определяем стационарные точки функции \(x\left(t \right):\) \[ {x"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 2t - 1 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 2 \pm \sqrt {16} }}{6} = - 1;\;\frac{1}{3}.} \] При \(t = 1\) функция \(x\left(t \right)\) достигает максимума, равного \ а в точке \(t = \large\frac{1}{3}\normalsize\) она имеет минимум, равный \[ {x\left({\frac{1}{3}} \right) } = {{\left({\frac{1}{3}} \right)^3} + {\left({\frac{1}{3}} \right)^2} - \left({\frac{1}{3}} \right) } = {\frac{1}{{27}} + \frac{1}{9} - \frac{1}{3} = - \frac{5}{{27}}.} \] Рассмотрим производную \(y"\left(t \right):\) \[ {y"\left(t \right) = {\left({{t^3} + 2{t^2} - 4t} \right)^\prime } } = {3{t^2} + 4t - 4.} \] Находим стационарные точки функции \(y\left(t \right):\) \[ {y"\left(t \right) = 0,}\;\; {\Rightarrow 3{t^2} + 4t - 4 = 0,}\;\; {\Rightarrow {t_{1,2}} = \frac{{ - 4 \pm \sqrt {64} }}{6} = - 2;\;\frac{2}{3}.} \] Здесь, аналогично, функция \(y\left(t \right)\) достигает максимума в точке \(t = -2:\) \ и минимума в точке \(t = \large\frac{2}{3}\normalsize:\) \[ {y\left({\frac{2}{3}} \right) } = {{\left({\frac{2}{3}} \right)^3} + 2{\left({\frac{2}{3}} \right)^2} - 4 \cdot \frac{2}{3} } = {\frac{8}{{27}} + \frac{8}{9} - \frac{8}{3} } = { - \frac{{40}}{{27}}.} \] Графики функций \(x\left(t \right)\), \(y\left(t \right)\) схематически показаны на рисунке \(15a.\)

Рис.15a

Рис.15b

Рис.15с

Заметим, что так как \[ {\lim\limits_{t \to \pm \infty } x\left(t \right) = \pm \infty ,}\;\;\; {\lim\limits_{t \to \pm \infty } y\left(t \right) = \pm \infty ,} \] то кривая \(y\left(x \right)\) не имеет ни вертикальных, ни горизонтальных асимптот. Более того, поскольку \[ {k = \lim\limits_{t \to \pm \infty } \frac{{y\left(t \right)}}{{x\left(t \right)}} } = {\lim\limits_{t \to \pm \infty } \frac{{{t^3} + 2{t^2} - 4t}}{{{t^3} + {t^2} - t}} } = {\lim\limits_{t \to \pm \infty } \frac{{1 + \frac{2}{t} - \frac{4}{{{t^2}}}}}{{1 + \frac{1}{t} - \frac{1}{{{t^2}}}}} = 1,} \] \[ {b = \lim\limits_{t \to \pm \infty } \left[ {y\left(t \right) - kx\left(t \right)} \right] } = {\lim\limits_{t \to \pm \infty } \left({\cancel{\color{blue}{t^3}} + \color{red}{2{t^2}} - \color{green}{4t} - \cancel{\color{blue}{t^3}} - \color{red}{t^2} + \color{green}{t}} \right) } = {\lim\limits_{t \to \pm \infty } \left({\color{red}{t^2} - \color{green}{3t}} \right) = + \infty ,} \] то кривая \(y\left(x \right)\) не имеет также и наклонных асимптот.

Определим точки пересечения графика \(y\left(x \right)\) с осями координат. Пересечение с осью абсцисс происходит в следующих точках: \[ {y\left(t \right) = {t^3} + 2{t^2} - 4t = 0,}\;\; {\Rightarrow t\left({{t^2} + 2t - 4} \right) = 0;} \]

  1. \({{t^2} + 2t - 4 = 0,}\;\; {\Rightarrow D = 4 - 4 \cdot \left({ - 4} \right) = 20,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 2 \pm \sqrt {20} }}{2}\normalsize = - 1 \pm \sqrt 5 .} \)

\ \[ {x\left({{t_2}} \right) = x\left({ - 1 - \sqrt 5 } \right) } = {{\left({ - 1 - \sqrt 5 } \right)^3} + {\left({ - 1 - \sqrt 5 } \right)^2} - \left({ - 1 - \sqrt 5 } \right) } = { - \left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \left({1 + 2\sqrt 5 + 5} \right) + 1 + \sqrt 5 } = { - 16 - 8\sqrt 5 + 6 + 2\sqrt 5 + 1 + \sqrt 5 } = { - 9 - 5\sqrt 5 \approx 20,18;} \] \[ {x\left({{t_3}} \right) = x\left({ - 1 + \sqrt 5 } \right) } = {{\left({ - 1 + \sqrt 5 } \right)^3} + {\left({ - 1 + \sqrt 5 } \right)^2} - \left({ - 1 + \sqrt 5 } \right) } = { - \left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \left({1 - 2\sqrt 5 + 5} \right) + 1 - \sqrt 5 } = { - 16 + 8\sqrt 5 + 6 - 2\sqrt 5 + 1 - \sqrt 5 } = { - 9 + 5\sqrt 5 \approx 2,18.} \] Таким же образом находим точки пересечения графика с осью ординат: \[ {x\left(t \right) = {t^3} + {t^2} - t = 0,}\;\; {\Rightarrow t\left({{t^2} + t - 1} \right) = 0;} \]
  1. \({{t^2} + t - 1 = 0,}\;\; {\Rightarrow D = 1 - 4 \cdot \left({ - 1} \right) = 5,}\;\; {\Rightarrow {t_{2,3}} = \large\frac{{ - 1 \pm \sqrt {5} }}{2}\normalsize.} \)

\ \[ {y\left({{t_2}} \right) = y\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 - \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 + 3\sqrt 5 + 15 + 5\sqrt 5 } \right) + \frac{1}{2}\left({1 + 2\sqrt 5 + 5} \right) + 2\left({1 + \sqrt 5 } \right) } = { - \cancel{2} - \cancel{\sqrt 5} + 3 + \cancel{\sqrt 5} + \cancel{2} + 2\sqrt 5 } = {3 + 2\sqrt 5 \approx 7,47;} \] \[ {y\left({{t_3}} \right) = y\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = {{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^3} + 2{\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right)^2} - 4\left({\frac{{ - 1 + \sqrt 5 }}{2}} \right) } = { - \frac{1}{8}\left({1 - 3\sqrt 5 + 15 - 5\sqrt 5 } \right) + \frac{1}{2}\left({1 - 2\sqrt 5 + 5} \right) + 2\left({1 - \sqrt 5 } \right) } = { - \cancel{2} + \cancel{\sqrt 5} + 3 - \cancel{\sqrt 5} + \cancel{2} - 2\sqrt 5 } = {3 - 2\sqrt 5 \approx - 1,47.} \] Разделим ось \(t\) на \(5\) интервалов: \[ {\left({ - \infty , - 2} \right),}\;\; {\left({ - 2, - 1} \right),}\;\; {\left({ - 1,\frac{1}{3}} \right),}\;\; {\left({\frac{1}{3},\frac{2}{3}} \right),}\;\; {\left({\frac{2}{3}, + \infty } \right).} \] На первом интервале \(\left({ - \infty , - 2} \right)\) значения \(x\) и \(y\) возрастают от \(-\infty\) до \(x\left({ - 2} \right) = - 2\) и \(y\left({ - 2} \right) = 8.\) Это схематически показано на рисунке \(15b.\)

На втором промежутке \(\left({ - 2, - 1} \right)\) переменная \(x\) возрастает от \(x\left({ - 2} \right) = - 2\) до \(x\left({ - 1} \right) = 1,\) а переменная \(y\) убывает от \(y\left({ - 2} \right) = 8\) до \(y\left({ - 1} \right) = 5.\) Здесь мы имеем участок убывающей кривой \(y\left(x \right).\) Она пересекает ось ординат в точке \(\left({0,3 + 2\sqrt 5 } \right).\)

На третьем интервале \(\left({ - 1,\large\frac{1}{3}\normalsize} \right)\) обе переменные убывают. Значение \(x\) изменяется от \(x\left({ - 1} \right) = 1\) до \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize.\) Соответственно, значение \(y\) уменьшается от \(y\left({ - 1} \right) = 5\) до \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize.\) Кривая \(y\left(x \right)\) при этом пересекает начало координат.

На четвертом интервале \(\left({\large\frac{1}{3}\normalsize,\large\frac{2}{3}\normalsize} \right)\) переменная \(x\) возрастает от \(x\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{5}{{27}}\normalsize\) до \(x\left({\large\frac{2}{3}\normalsize} \right) = \large\frac{2}{{27}}\normalsize,\) а переменная \(y\) убывает от \(y\left({\large\frac{1}{3}\normalsize} \right) = - \large\frac{29}{{27}}\normalsize\) до \(y\left({\large\frac{2}{3}\normalsize} \right) = - \large\frac{40}{{27}}\normalsize.\) На этом участке кривая \(y\left(x \right)\) пересекает ось ординат в точке \(\left({0,3 - 2\sqrt 5 } \right).\)

Наконец, на последнем интервале \(\left({\large\frac{2}{3}\normalsize, + \infty } \right)\) обе функции \(x\left(t \right)\), \(y\left(t \right)\) возрастают. Кривая \(y\left(x \right)\) пересекает ось абсцисс в точке \(x = - 9 + 5\sqrt 5 \approx 2,18.\)

Для уточнения формы кривой \(y\left(x \right)\) вычислим точки максимума и минимума. Производная \(y"\left(x \right)\) выражается в виде \[ {y"\left(x \right) = {y"_x} } = {\frac{{{y"_t}}}{{{x"_t}}} } = {\frac{{{{\left({{t^3} + 2{t^2} - 4t} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} } = {\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}} } = {\frac{{\cancel{3}\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\cancel{3}\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}} } = {\frac{{\left({t + 2} \right)\left({t - \frac{2}{3}} \right)}}{{\left({t + 1} \right)\left({t - \frac{1}{3}} \right)}}.} \] Изменение знака производной \(y"\left(x \right)\) показано на рисунке \(15c.\) Видно, что в точке \(t = - 2,\) т.е. на границе \(I\)-го и \(II\)-го интервалов кривая имеет максимум, а при \(t = \large\frac{2}{3}\normalsize\) (на границе \(IV\)-го и \(V\)-го интервалов) существует минимум. При переходе через точку \(t = \large\frac{1}{3}\normalsize\) производная также меняет знак с плюса на минус, но в этой области кривая \(y\left(x \right)\) не является однозначной функцией. Поэтому указанная точка экстремумом не является.

Исследуем также выпуклость данной кривой. Вторая производная \(y""\left(x \right)\) имеет вид: \[ y""\left(x \right) = {y""_{xx}} = \frac{{{{\left({{y"_x}} \right)}"_t}}}{{{x"_t}}} = \frac{{{{\left({\frac{{3{t^2} + 4t - 4}}{{3{t^2} + 2t - 1}}} \right)}^\prime }}}{{{{\left({{t^3} + {t^2} - t} \right)}^\prime }}} = \frac{{\left({6t + 4} \right)\left({3{t^2} + 2t - 1} \right) - \left({3{t^2} + 4t - 4} \right)\left({6t + 2} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{18{t^3} + 12{t^2} + 12{t^2} + 8t - 6t - 4 - \left({18{t^3} + 24{t^2} - 24t + 6{t^2} + 8t - 8} \right)}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{\cancel{\color{blue}{18{t^3}}} + \color{red}{24{t^2}} + \color{green}{2t} - \color{maroon}{4} - \cancel{\color{blue}{18{t^3}}} - \color{red}{30{t^2}} + \color{green}{16t} + \color{maroon}{8}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - \color{red}{6{t^2}} + \color{green}{18t} + \color{maroon}{4}}}{{{{\left({3{t^2} + 2t - 1} \right)}^3}}} = \frac{{ - 6\left({t - \frac{{9 - \sqrt {105} }}{6}} \right)\left({t - \frac{{9 + \sqrt {105} }}{6}} \right)}}{{{{\left({t + 1} \right)}^3}{{\left({3t - 1} \right)}^3}}}. \] Следовательно, вторая производная меняет свой знак на противоположный при переходе через следующие точки (рис.\(15с\)): \[ {{t_1} = - 1:\;\;x\left({ - 1} \right) = 1,}\;\; {y\left({ - 1} \right) = 5;} \] \[ {{t_2} = \frac{{9 - \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,24;}\;\; {y\left({\frac{{9 - \sqrt {105} }}{6}} \right) \approx 0,91;} \] \[ {{t_3} = \frac{1}{3}:}\;\; {x\left({\frac{1}{3}} \right) = - \frac{5}{{27}},}\;\; {y\left({\frac{1}{3}} \right) = - \frac{{29}}{{27}};} \] \[ {{t_4} = \frac{{9 + \sqrt {105} }}{6}:}\;\; {x\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,1;}\;\; {y\left({\frac{{9 + \sqrt {105} }}{6}} \right) \approx 40,8.} \] Поэтому указанные точки представляют собой точки перегиба кривой \(y\left(x \right).\)

Схематический график кривой \(y\left(x \right)\) показан выше на рисунке \(15b.\)

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.